Using Historical Experimental Information in the Bayesian Analysis of Reproduction Toxicological Experimental Results

Jing Zhang

Miami University

August 12, 2014

Using Historical Information

- Introduction
- Methods
- Application
- Oiscussion

3

A B < A B </p>

- < A

Introduction

What does aquatic toxicology experiments testing?

- Evaluating the potential (adverse) impact of chemicals in receiving waters, marine systems, and other aquatic ecosystems;
- Interesting endpoints: survival, reproduction and growth of organisms;
- In reproduction tests, the organisms are exposed to different levels of chemicals; the number of offspring are recorded.

イロト 不得下 イヨト イヨト

Introduction

Statistical Methods for Reproductive Toxicology:

• ANOVA (Landis & Chapman, 2011)

- NOEC: the no-observed-effect concentration, the greatest concentration level with responses that are not significantly different from the responses of the control group;
- LOEC: the lowest-observed-effect concentration, the lowest concentration level with responses that differs from the control group responses
- Regression relative inhibition concentration (RIp), the concentration level to some hazard, associated with a specified level (p) of change in the response relative to the control response.

(日) (四) (日) (日) (日)

Bayesian methods

- give flexible model outputs;
- are able to incorporate different levels of variability into a hierarchical framework;
- are able to incorporate expert knowledge/historical information into analysis.

Introduction To utilize historical information, we can ...

- combine historical information and current data analysis of the pooled data;
- use posterior distribution of parameters based on the historical data as the prior information (Zhang et al., 2012)
- use the historical data with a discount power priors (Ibramhim and Chen, 2000; Chen et al., 2000)
- consider the similarity between current experiment and historical experiment – commensurate priors (Hobbs et al., 2012)

Jing Zhang (Miami University)

6 / 39

- Ideally, when organisms are alive until the end of the experiments, the number of young produced are often assumed to follow a Poisson distribution;
- When organisms are exposed to higher toxicant concentrations, the mortality rates usually increases and excess zeroes exists in the resulting number of total young due to death of organisms.
- When toxicity affects both fecundity and mortality, the reproduction outcomes can be modeled with zero-inflated Poisson.

Jing Zhang (Miami University)

Using Historical Information

7 / 39

- Four experiments using Ceriodaphnia dubia conducted between August 29, 1989 and August 24, 1992;
- In each experiment, 9 to 10 organisms were assigned to each of 6 different exposure groups;
- The four experiments were carried out in 3 different labs.

Introduction Motivating data

Experiment	Lab	Date	Exposures
current	1	Aug. 24, 92	(0, 0.25, 0.5, 1, 2, 4%)
Historical 1	1	Aug. 4, 92	(0, 0.25, 0.5, 1, 2, 4%)
Historical 2	2	Sep. 19, 90	(0, 0.13, 0.25, 0.5, 1, 2%)
Historical 3	3	Aug. 29, 89	(0, 0.25, 0.5, 1, 2, 4%)

3

<ロ> (日) (日) (日) (日) (日)

Introduction Motivating data

Introduction

Data Notation

Concentration	<i>c</i> ₀	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> 4	<i>C</i> 5
Current	Y_{01}, \ldots, Y_{0n_0}	Y_{11}, \ldots, Y_{1n_1}				Y_{51}, \ldots, Y_{5n_5}
H1	$Y_{01}^1, \ldots, Y_{0n_0^1}^1$	$Y_{11}^1, \ldots, Y_{1n_1^1}^1$				$Y_{51}^1, \ldots, Y_{5n_5^1}^1$
H2	$Y_{01}^2, \ldots, Y_{0n_0^2}^2$	$Y_{11}^2, \ldots, Y_{1n_1^2}^2$				$Y_{51}^2, \ldots, Y_{5n_5^2}^2$
H3	$Y_{01}^3, \ldots, Y_{0n_0^3}^3$	$Y_{11}^3, \ldots, Y_{1n_1^3}^3$				$Y_{51}^3, \ldots, Y_{5n_5^3}$

- c_i: concentration levels
- *Y_{ij}*: number of total young produced in three broods by the *j*th organism exposed to concentration *c_i*,
- Y^k_{ij}: number of total young produced in three broods by the *j*th organism exposed to concentration c_i in the *k*th historical experiment,

Jing Zhang (Miami University)

Using Historical Information

Without excess zeroes:

$$Y_{ij} \sim independent \ Poisson(\mu_i),$$
 (1)
 $log(\mu_i) = \beta_0 + \beta_1 c_i + \beta_2 c_i^2 + \ldots + \beta_m c_i^m.$ (2)

- μ_i: mean total young produced in three broods of all organisms exposed to concentration c_i; μ₀ = the control group mean.
- β_k, k = 0, 1, 2, ..., m: coefficients associated with the (function of) exposure. (m < number of concentration levels tested.)

Methods

With excess zeroes:

$$Y_{ij} = V_{ij} * (1 - B_{ij}).$$
 (3)

$$V_{ij} \mid \mu_i \sim independent \ Poisson(\mu_i), \quad (4)$$

$$log(\mu_i) = \beta_0 + \beta_1 c_i + \beta_2 c_i^2 + \ldots + \beta_m c_i^m. \quad (5)$$

$$B_{ij} \mid \pi_i \sim independent \; Bernoulli(\pi_i), \quad (6)$$

$$logit(\pi_i) = \gamma_0 + \gamma_1 c_i + \gamma_2 c_i^2 + \ldots + \gamma_l c_l^l. \quad (7)$$

- μ_i^{*} = μ_i(1 π_i): mean total young produced in three broods of all organisms exposed to concentration c_i; μ₀^{*} = the control group mean.
- B_{ij}: latent variable indicating that zero young produced in three broods by the *j*th organism exposed to concentration c_i due to the death of organism, i.e., when B_{ij} = 0 the number of young are counts, while 0 might still be observed due to the chance of a discrete random variable equal to zero.

イロト 不得 トイヨト イヨト 二日

Methods Model Notation

- *V_{ij}*: latent variable representing that total young produced in three broods by the *j*th organism exposed to concentration *c_i* assuming the organism survive.
- π_i: mortality rate of organisms exposed to concentration c_i before having the first brood.
- β_k, k = 0, 1, 2, ..., m: coefficients associated with the (function of) exposure. (m < number of concentration levels tested.)
- γ_k , k = 0, 1, 2, ..., l: coefficients concerning relationship between the mortality and exposure.

15 / 39

Methods Potency Estimation

- Mean (excess zeroes case): $E(Y_{ij}) = \mu_i^* = \mu_i (1 \pi_i) = e^{\beta_0 + \beta_1 c_i + \ldots + \beta_m c_i^m} (1 \frac{exp(\gamma_0 + \gamma_1 c_i + \ldots + \gamma_l c_i^l)}{1 + exp(\gamma_0 + \gamma_1 c_i + \ldots + \gamma_l c_i^l)}).$
- Often $m \leq 2$ and $l \leq 2$ is sufficiently flexible.
- Rlp is the concentration level that satisfies

$$1 - p = \mu_{Rlp}^* / \mu_0^*, \tag{8}$$

where p is the proportion of inhibition and 0 .

イロト イポト イヨト イヨト 二日

- Normal priors for regression coefficients (Wheeler and Bailer, 2009; Zhang et al., 2012)
- $\beta_i \sim N(\beta_i^0, \sigma_i^2),$
- $\gamma_i \sim N(\gamma_i^0, \delta_i^2);$
- Uniform distributions used for standard deviation parameters (Gelman, 2006)

A B M A B M

Methods

Utilizing historical information in priors

• Fix the shape of distribution (normal), hyperparameters needed:

Normal prior means, β_0^0 and γ_0^0 , can be specified based on the sample mean and sample proportion of observed zeroes in previous reproductive control tests;

• Use the historical data likelihood directly – power priors and commensurate priors.

イロト 不得下 イヨト イヨト 三日

- The power prior is defined to be the likelihood function based on the historical data raised to a power, *a* (Ibrahim and Chen, 2000).
- Historical data D₀ = (Y^{hk}_{ij}, all i, j, k) be the historical data and π₀(θ) be the initial prior distribution for θ = (β, γ).
- \bullet The power prior distribution of $\boldsymbol{\theta}$ for the current study is

$$\pi(oldsymbol{ heta}|\mathbf{D}_0,oldsymbol{a})\propto L(oldsymbol{ heta}|\mathbf{D}_0)^{oldsymbol{s}}\pi_0(oldsymbol{ heta})$$

- "Effective Sample Size": an₀
- It is reasonable to restrict 0 ≤ a ≤ 1 where higher a indicates an increased impact of the historical data which implies a strong similarity between the historical and current study.
- If a = 1, then historical data and current data are treated equally.
- a = 0 indicates no inclusion of the historical data.

- Conditional power prior: assuming fixed values of a;
- Joint power prior: assuming $a \sim \pi(a)$;
- Modified power prior: joint power prior divided by a normalizing constant. (Duan et al., 2006a, 2006b)

- initially derived to utilize historical **control** information (Hobbs et al., 2011; Hobbs et al., 2012).
- Historical data \mathbf{D}_0 is conditional on parameters $\boldsymbol{\theta}_0$;
- $\boldsymbol{\theta} \mid \boldsymbol{\theta}_0 \sim \pi(\boldsymbol{\theta}_0, \tau)$, where $\boldsymbol{\theta}$ is mean and τ is precision.
- The commensurate prior distribution of ${\boldsymbol heta}$ for the current study is

$$\pi(\boldsymbol{\theta}|\mathbf{D}_0,\boldsymbol{\theta}_0,\tau) \propto L(\boldsymbol{\theta}_0|\mathbf{D}_0)\pi(\boldsymbol{\theta}\mid\boldsymbol{\theta}_0,\tau)\pi_0(\boldsymbol{\theta}),$$

where $\pi_0(\theta)$ is a vague initial prior for θ .

- τ: positive value reflecting belief of the commensurability of historical and current control responses;
- The bigger au is, the more similar between heta and $heta_0$;
- When τ is close to zero, the historical and current data are not compatible at all;
- When τ approaches infinity, the two data sets are from the same population and we can analyze a pooled data set;
- Fully Bayesian analysis: $au \sim \pi(au)$; $oldsymbol{ heta}_0 \sim \pi(oldsymbol{ heta}_0)$

Different scenarios of incorporating historical information:

- Single historical data, control information only;
- Single historical data, all information;
- Multiple historical data, control information only;
- Multiple historical data, all information;

Methods

Multiple historical experiments available

• When power prior is used, different historical data sets may have differing values of "*a*₀" with the current data of interest.

$$p(\theta|\mathbf{D}_1,\ldots\mathbf{D}_H,\mathbf{a}) \propto L(\theta|\mathbf{D}_1)^{a_1}\ldots L(\theta|\mathbf{D}_H)^{a_H}p_0(\theta).$$

• When commensurate prior is used to incorporate multiple historical control data sets,

$$p(\theta|\mathbf{D}_1^0,\ldots\mathbf{D}_H^0, heta_0, au) \propto L(heta_0|\mathbf{D}_1^0)\ldots L(heta_0|\mathbf{D}_H^0) \ \pi(heta| heta_0, au)p_0(heta_0).$$

25 / 39

- Consider two experiments first: current and historical 1;
- Experiments conducted in the same lab during the same month;
- Conditional power priors with different a's;
- Commensurate prior with $au \sim \Gamma(4, 0.5)$.

Incorporating single historical control data, Poisson distributed assumed

	Power Priors									
	a = 0	a = 0.1	<i>a</i> = 0.3	a = 0.5	a = 0.7	a = 0.9	<i>a</i> = 1	$\hat{\tau} = 8.02$		
βο										
PE	2.99	3.00	3.03	3.05	3.06	3.08	3.08	2.99		
SD	0.07	0.06	0.06	0.05	0.05	0.05	0.05	0.07		
95% CI	[2.85,3.11]	2.85,3.11] [2.88,3.12] [2.91,3.14] [2.94,3.15] [2.97,3.16] [2.98,3.17] [2.99,3.17]								
β1										
PE	-0.18	-0.22	-0.30	-0.35	-0.39	-0.42	-0.43	-0.21		
SD	0.23	0.22	0.22	0.21	0.20	0.20	0.19	0.23		
95%	[-0.63,	[-0.66,	[-0.71,	[-0.75,	[-0.77,	[-0.80,	[-0.80,	[-0.64,		
CI	0.26]	0.22]	0.14]	0.07]	0.01]	-0.03]	-0.05]	0.24]		
β_2										
PE	-0.61	-0.61 -0.59 -0.55 -0.53 -0.51 -0.50 -0.49								
SD	0.15	0.15	0.14	0.14	0.13	0.13	0.13	0.15		
95%	[-0.90,	[-0.90, [-0.89, [-0.85, [-0.82, [-0.79, [-0.77, [-0.77,								
CI	-0.33]	-0.31]	-0.30]	-0.28]	-0.27]	-0.25]	-0.25]	-0.32]		

Jing Zhang (Miami University)

CCHMC BERD Seminar

イロト イポト イヨト イヨト

27 / 39

3

Incorporating single historical control data, Poisson distributed assumed

	Power Priors									
	a = 0	a = 0 $a = 0.1$ $a = 0.3$ $a = 0.5$ $a = 0.7$ $a = 0.9$ $a = 1$								
<i>RI</i> ₂₅										
PE	0.55	0.53	0.50	0.48	0.46	0.45	0.44	0.54		
SD	0.10	0.10 0.10 0.09 0.08 0.08 0.07 0.07								
95% CI	[0.37,0.76]	[6] [0.37,0.74] [0.35,0.70] [0.34,0.66] [0.33,0.63] [0.32,0.61] [0.						[0.37, 0.75]		
RI ₅₀										
PE	0.93	0.91	0.88	0.86	0.84	0.83	0.83	0.92		
SD	0.09 0.08 0.08 0.08 0.07 0.07 0.07									
95% CI	[0.76,1.10]	[0.75,1.07]	[0.72,1.04]	[0.71,1.02]	[0.70,0.99]	[0.69,0.97]	[0.69,0.97]	[0.75, 1.09]		

3

Incorporating single historical control data, ZI-Poisson distributed assumed

		Power Priors									
	a = 0	<i>a</i> = 0.1	<i>a</i> = 0.3	<i>a</i> = 0.5	<i>a</i> = 0.7	<i>a</i> = 0.9	<i>a</i> = 1	$\widehat{\tau_{\beta_0}} = 8.00$ $\widehat{\tau_{\gamma_0}} = 7.36$			
βο											
PE	2.98	3.00	3.03	3.04	3.06	3.07	3.08	2.99			
SD	0.07	0.06	0.06	0.05	0.05	0.05	0.05	0.07			
95%	[2.85,	[2.87,	[2.91,	[2.94,	[2.96,	[2.98,	[2.99,	[2.86,			
CI	3.11]	3.11] 3.12] 3.14] 3.15] 3.16] 3.17] 3.17]									
β1											
PE	-0.16	-0.21	-0.28	-0.34	-0.39	-0.41	-0.43	-0.18			
SD	0.24	0.23	0.22	0.22	0.21	0.21	0.20	0.24			
95%	[-0.63,	[-0.67,	[-0.71,	[-0.76,	[-0.80,	[-0.81,	[-0.83,	[-0.63,			
CI	0.31]	0.26]	0.15]	0.09]	0.03]	0.00]	-0.03]	0.28]			
β_2											
PE	-0.55	-0.53	-0.49	-0.47	-0.44	-0.43	-0.42	-0.54			
SD	0.16	0.16	0.15	0.16	0.15	0.15	0.15	0.16			
95%	[-0.87,	[-0.85,	[-0.80,	[-0.78,	[-0.74,	[-0.74,	[-0.72,	[-0.86,			
CI	-0.23]	-0.22]	-0.20]	-0.17]	-0.15]	-0.15]	-0.13]	-0.23]			

Jing Zhang (Miami University)

Incorporating single historical control data, ZI-Poisson distributed assumed

	Power Priors										
	<i>a</i> = 0	a = 0 $a = 0.1$ $a = 0.3$ $a = 0.5$ $a = 0.7$ $a = 0.9$ $a = 1$									
Yo											
PE	-5.63	- 5.47	-5.53	-5.61	-5.66	-5.77	-5.79	-5.71			
SD	2.61	2.61 2.93 2.50 2.84 2.56 2.90 2.55									
95%	[-12.45,	[-13.64,	[-12.11,	[-13.08,	[-12.44,	[-14.27,	[-12.51.	[-13.21,			
CI	-2.76]	-2.55]	-2.70]	-2.77]	-2.84]	-2.89]	-3.00]	-2.90]			
γ_1											
PE	2.03	1.91	2.00	2.02	2.07	2.12	2.18	2.05			
SD	2.59	2.59 2.92 2.59 2.81 2.81 2.86 2.85									
95%	[-4.74,	[-4.74, [-5.93, [-4.04, [-5.40, [-5.17, [-5.98, [-5.46,									
CI	4.97]	5.23]	4.89]	5.05]	5.09]	5.11]	5.19]	4.94]			

Image: A matrix

Incorporating single historical control data, ZI-Poisson distributed assumed

	Power Priors											
	<i>a</i> = 0	a = 0 $a = 0.1$ $a = 0.3$ $a = 0.5$ $a = 0.7$ $a = 0.9$ $a = 1$										
<i>RI</i> ₂₅												
PE	0.58	0.56	0.52	0.50	0.47	0.46	0.45	0.57				
SD	0.11	0.11 0.11 0.10 0.10 0.09 0.09 0.08										
95%	[0.38,	[0.37,	[0.35,	[0.34,	[0.33,	[0.33,	[0.32,	[0.38,				
CI	0.81]	0.78]	0.73]	0.70]	0.67]	0.65]	0.63]	0.79]				
RI ₅₀												
PE	0.97	0.95	0.92	0.89	0.87	0.86	0.85	0.96				
SD	0.09	0.09 0.10 0.09 0.09 0.08 0.08 0.08										
95%	[0.78,	[0.78, [0.77, [0.75, [0.73, [0.71, [0.71, [0.70,										
CI	1.15]	1.13]	1.09]	1.06]	1.04]	1.02]	1.01]	1.14]				

3

Incorporating all information from single historical data, Poisson distributed assumed

		Power Priors										
	<i>a</i> = 0	a = 0 $a = 0.1$ $a = 0.3$ $a = 0.5$ $a = 0.7$ $a = 0.9$ $a = 1$										
RI ₂₅												
PE	0.55	0.55 0.56 0.60 0.62 0.64 0.65 0.65										
SD	0.10	0.10	0.08	0.08	0.07	0.06	0.06	0.10				
95% CI	[0.37,0.76]	[0.40,0.76]	[0.44,0.76]	[0.47,0.77]	[0.50,0.77]	[0.52,0.76]	[0.54,0.77]	[0.40,0.79]				
RI ₅₀												
PE	0.93	0.93	0.93	0.94	0.94	0.94	0.94	0.95				
SD	0.09	0.09 0.08 0.07 0.06 0.05 0.05 0.04										
95% CI	[0.76,1.10]	[0.77,1.08]	[0.80,1.06]	[0.82,1.05]	[0.84,1.04]	[0.84,1.03]	[0.85,1.02]	[0.78,1.11]				

3

Incorporating all information from single historical data, ZI-Poisson distributed assumed

	Power Priors										
	<i>a</i> = 0	<i>a</i> = 0.1	<i>a</i> = 0.3	<i>a</i> = 0.5	<i>a</i> = 0.7	<i>a</i> = 0.9	<i>a</i> = 1				
<i>RI</i> 25											
PE	0.58	0.60 0.63 0.65 0.67 0.67 0.69									
SD	0.11	0.13	0.12	0.11	0.08	0.07	0.07	0.10			
95% CI	[0.38,0.81]	[0.41,0.81]	[0.45,0.82]	[0.49,0.82]	[0.51,0.82]	[0.53,0.81]	[0.55,0.82]	[0.42, 0.81]			
RI ₅₀											
PE	0.97 0.97 0.99 0.99 0.98 0.98 0.99										
SD	0.09	0.09 0.11 0.08 0.07 0.06 0.06 0.06									
95% CI	[0.78,1.15]	[0.80,1.14]	[0.83,1.13]	[0.85,1.12]	[0.87,1.10]	[0.87,1.10]	[0.88,1.10]	[0.81, 1.14]			

3

Values of a_0 's used in power priors when 3 sets of historical control are used

Experiment	Current	Historical 1	Historical 2	Historical 3
Lab	1	1	2	3
Power parameters	/	0	0	0
<i>a</i> ₁				
<i>a</i> ₂	/	0.5	0.5	0.5
<i>a</i> ₃	/	0.9	0.1	0.2
a_4	/	0.9	0.1	0.1
<i>a</i> ₅	/	0.9	0.1	0.5
<i>a</i> ₆	/	0.8	0.2	0.5
<i>a</i> ₇	/	0.7	0.3	0.5
<i>a</i> ₈	/	0.6	0.4	0.5

Jing Zhang (Miami University)

Using Historical Information

CCHMC BERD Seminar

イロト イポト イヨト イヨト

34 / 39

э

Incorporating multiple historical control data, Poisson distributed assumed

				Pow	er				Commensu
			P	riors $a = ($	$a_1, a_2, a_3)$				rate priors
	(0,0,0)	(0.5,0.5,0.5)	(0.9,0.1,0.2)	(0.9,0.1,0.1)	(0.9,0.1,0.5)	(0.8,0.2,0.5)	(0.7,0.3,0.5)	(0.6,0.4,0.5)	$\hat{\tau} = 4.29$
<i>RI</i> ₂₅									
PE	0.55	0.61	0.52	0.51	0.54	0.56	0.58	0.60	0.55
SD	0.10	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.10
95 % CI	[0.37,0.76]	[0.45, 0.78]	[0.37, 0.69]	[0.37, 0.68]	[0.39, 0.71]	[0.41, 0.73]	[0.42, 0.74]	[0.44, 0.76]	[0.37,0.76]
RI ₅₀									
PE	0.93	0.97	0.89	0.89	0.92	0.93	0.95	0.96	0.93
SD	0.09	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.09
95 % CI	[0.76,1.10]	[0.84, 1.11]	[0.75, 1.04]	[0.75, 1.03]	[0.78, 1.05]	[0.80, 1.07]	[0.81, 1.08]	[0.82, 1.09]	[0.76,1.10]

イロト イポト イヨト イヨト

3

Incorporating multiple historical control data, ZI-Poisson distributed assumed

	Power Priors $a = (a_1, a_2, a_3)$ (0,0,0) (0.5,0.5,0.5) (0.9,0.1,0.2) (0.9,0.1,0.1) (0.9,0.1,0.5) (0.8,0.2,0.5) (0.7,0.3,0.5) (0.6,0.4,0.5)										
RI ₂₅											
PE	0.58	0.63	0.53	0.53	0.56	0.58	0.60	0.62	0.58		
SD	0.11	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.11		
95%	[0.38,	[0.45,	[0.38,	[0.37,	[0.40,	[0.41,	[0.43,	[0.45,	[0.39,		
CI	0.81]	0.82]	0.71]	0.71]	0.74]	0.76]	0.78]	0.80]	0.81]		
RI ₅₀											
PE	0.97	1.01	0.93	0.92	0.95	0.97	0.98	1.00	0.97		
SD	0.09	0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.07									
95%	[0.78,	[0.86,	[0.78,	[0.77,	[0.80,	[0.82,	[0.83,	[0.85,	[0.79,		
CI	1.15]	1.16]	1.08]	1.08]	1.10]	1.12]	1.13]	1.14]	1.15]		

(日) (同) (三) (三)

36 / 39

- This study serves as a template of Bayesian potency estimation when historical information are available.
- Extend the Bayesian method to incorporate historical information about multiple endpoints jointly (hatching success, survival, growth and reproduction).
- Applications in design? Sample size determination?

References

- Chen MH, Ibrahim JG, Shao QM, 2000. Power prior distributions for generalized linear models. Journal of Statistical Planning and Inference 84: 121-137.
- Duan, Y, Smith, EP, Ye, K, 2006. Using power priors to inprove the binomial test of water quality. Journal of Agricultural, Biological, and Environmental Statistics **11**: 151-168.
- Duan, Y, Ye, K, Smith, EP, 2006. Evaluating water quality using power priors to incorporate historical control information. Environmetrics 17: 95-106.
- Ibrahim, JG and Chen, MH, 2000. Power prior distributions for regression models. Statistical Science **15**: 46-60.
- Gelman A, 2006. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis **1**: 515-533.

References

- Hobbs, BP, Carlin, BP, Mandekar, SJ, Sargent, DJ, 2011. Hierarchical commensurate and power prior models for adaptive incorporation of historical information in clinical trials. Biometrics 67: 1047-1056.
- Hobbs, BP, Sargent, DJ, and Carlin, BP, 2012. Commensurate priors for incorporating historical information in clinical trials using general and generalized linear models. Bayesian Analysis **7**: 639-674.
- Wheeler, MW, Bailer, AJ, 2009. Benchmark dose estimation incorporating multiple data sources. Risk Analysis 29: 249-256.
- Zhang, J, Bailer, AJ and Oris, JT, 2012. Bayesian Approach to Estimating Potency In Aquatic Toxicology. Environmental Toxicology and Chemistry **31**: 916-927.

イロト 不得 トイヨト イヨト 二日