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1. Introduction

◮ High-dimensional classification arises in many contemporary
statistical problems.
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1. Introduction

◮ High-dimensional classification arises in many contemporary
statistical problems.

◮ • Bioinformatic: disease classification using microarray,
proteomics, fMRI data.

◮ • Document or text classification: E-mail spam.

◮ • Voice recognition, hand written recognition, etc.
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1. Introduction

Well known classification methods include:

◮ ♠ Logistic Regression
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1. Introduction

Well known classification methods include:

◮ ♠ Logistic Regression

◮ ♠ Fisher discriminant analysis

◮ ♠ Naive Bayes classifier

For high-dimensional data (i.e. when p >> n), the above methods
doesn’t work well.

� Bickel and Levina (2004) showed that Fisher breaks down for
high-dimensions and suggested Naive Bayes rule.

� Fan and Fan (2008) showed that even for Naive Bayes using
all the features increases the error rate and suggested FAIR.
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1. Introduction

� Fan and Fan (2008) showed that the two-sample t-test can get
important features.
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1. Introduction

� Fan and Fan (2008) showed that the two-sample t-test can get
important features.

� Fan and etal.(2012) showed that Naive Bayes increase error
rates if there is correlation among the features.

� My Works:

• I will show that even under high-correlation Naive Bayes can
perform better than Fisher.

• I propose a generalized test statistic and give the condition under
which it selects important features.
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2. Classification with Sparse Signals

Fisher discriminant rule

δF (X ,µd ,µa,Σ) = 1
{

µT
d Σ

−1(X − µa) > 0
}

, (1)
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2. Classification with Sparse Signals

Fisher discriminant rule

δF (X ,µd ,µa,Σ) = 1
{

µT
d Σ

−1(X − µa) > 0
}

, (1)

with corresponding misclassification error rate

W (δF ,θ) = Φ̄

(

(µT
d Σ

−1µd )
1/2

2

)

. (2)
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2. Classification with Sparse Signals

Naive Bayes rule

δNB(X ,µd ,µa,D) = 1
{

µT
d D

−1(X − µa) > 0
}

, (3)
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2. Classification with Sparse Signals

Naive Bayes rule

δNB(X ,µd ,µa,D) = 1
{

µT
d D

−1(X − µa) > 0
}

, (3)

whose misclassification error rate is

W (δNB ,θ) = Φ̄

(

µT
d D

−1µd

2(µT
d D

−1ΣD−1µd )
1/2

)

. (4)
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2. Classification with Sparse Signals

Definition: Suppose that µd = (α1, α2, . . . , αs , 0, . . . , 0)
T is the

p× 1 mean difference vector where αj ∈ R\{0}, j = 1, 2, . . . , s. We
say that µd is sparse if s = o(p). Signal is defined as

Cs = µT
d D

−1µd =
s
∑

j=1

α2
j

σ2
j

where σ2
j is the common variance for

feature j in the two classes.

Examples of Sparse situations in real life:
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Definition: Suppose that µd = (α1, α2, . . . , αs , 0, . . . , 0)
T is the

p× 1 mean difference vector where αj ∈ R\{0}, j = 1, 2, . . . , s. We
say that µd is sparse if s = o(p). Signal is defined as

Cs = µT
d D

−1µd =
s
∑

j=1

α2
j

σ2
j

where σ2
j is the common variance for

feature j in the two classes.

Examples of Sparse situations in real life:

◮ ⋆ Gene Expression data (Eg: p genes from Leukemia and
Normal, only s of them distinguish Leukemia and Normal).

◮ ⋆ Author Identification (Eg: two novels from two authors and
there are only s few words which distinguish them).
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2. Classification with Sparse Signals

Theorem 2.1: If m ≤ s,µ
(m)
d = (α,α, . . . , α)T = α1, α 6= 0 and

Σ(m) is the truncated m ×m equicorrelation matrix, then we have

W (δF ,θ
(m)) = W (δNB ,θ

(m)),

where θ(m) is the truncated parameter.
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2. Classification with Sparse Signals

Theorem 2.1: If m ≤ s,µ
(m)
d = (α,α, . . . , α)T = α1, α 6= 0 and

Σ(m) is the truncated m ×m equicorrelation matrix, then we have

W (δF ,θ
(m)) = W (δNB ,θ

(m)),

where θ(m) is the truncated parameter.

We define ρ̄(m) and ρ
(m)
max are equicorrelation matrices with off

diagonals the mean of the correlation coefficients and largest of the
absolute values of the correlation coefficients respectively.
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2. Classification with Sparse Signals

Theorem 2.2: Suppose ρ(m) is an m ×m correlation matrix and

µ
(m)
d is an m × 1 mean difference vector.
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2. Classification with Sparse Signals

Theorem 2.2: Suppose ρ(m) is an m ×m correlation matrix and

µ
(m)
d is an m × 1 mean difference vector.

(a)

Φ̄





√

(µ
(m)
d )T (D(m))−1µ

(m)
d

2
√

λmin(ρ(m))



 ≤ W (δw , θ
(m)) ≤ Φ̄





√

(µ
(m)
d )T (D(m))−1µ

(m)
d

2
√

λmax(ρ(m))




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2. Classification with Sparse Signals

Theorem 2.2: Suppose ρ(m) is an m ×m correlation matrix and

µ
(m)
d is an m × 1 mean difference vector.

(a)

Φ̄





√

(µ
(m)
d )T (D(m))−1µ

(m)
d

2
√

λmin(ρ(m))



 ≤ W (δw , θ
(m)) ≤ Φ̄





√

(µ
(m)
d )T (D(m))−1µ

(m)
d

2
√

λmax(ρ(m))





(b) Suppose, further, that λmin(ρ
(m)) ≥ λmin(ρ̄

(m)) = 1− ρ̄. Then

Φ̄





√

(µ
(m)
d )T (D(m))−1µ

(m)
d

2
√
1− ρ̄



 ≤ W (δw , θ
(m)) ≤ Φ̄





√

(µ
(m)
d )T (D(m))−1µ

(m)
d

2
√

1 + (m − 1)ρmax





where w = F or w = NB for the truncated parameter θ(m).
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3. Feature Selection

Goal of Feature Selection. How do i pick the best markers?
Which method? Finding a needle in haystack?
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3. Feature Selection

Two-sample t-test
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3. Feature Selection

Two-sample t-test

For unequal sample sizes, unequal variance, the absolute value of
the two-sample t-statistic for feature j is defined as

Tj =
|X̄1j − X̄0j |

√

S2
1j/n1 + S2

0j/n0
, j = 1, . . . , p. (5)
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For unequal sample sizes, unequal variance, the absolute value of
the two-sample t-statistic for feature j is defined as

Tj =
|X̄1j − X̄0j |

√

S2
1j/n1 + S2

0j/n0
, j = 1, . . . , p. (5)

Fan and Fan (2008) gave the conditions under which the
two-sample t-test can select all the important features with
probability 1.
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3. Feature Selection

Two-sample t-test

For unequal sample sizes, unequal variance, the absolute value of
the two-sample t-statistic for feature j is defined as

Tj =
|X̄1j − X̄0j |

√

S2
1j/n1 + S2

0j/n0
, j = 1, . . . , p. (5)

Fan and Fan (2008) gave the conditions under which the
two-sample t-test can select all the important features with
probability 1.

In this talk we will use the two-sample t-test as feature selection
method.
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3. Feature Selection

They stated their theorem as follows assuming µd is sparse:

Theorem 3.1: Let s be a sequence such that log(p − s) = o(nγ)
and log s = o(n1/2−γβn) for some βn → ∞ and 0 < γ < 1/3.

Suppose that min
1≤j≤s

|µd,j |
√

σ2
1j + σ2

0j

= n−γβn where µd,j is the j th

feature mean difference. Then, for x ∼ cnγ/2 with c some positive
constant, we have

P

(

min
j≤s

Tj ≥ x and max
j>s

Tj < x

)

→ 1.
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3. Feature Selection

They stated their theorem as follows assuming µd is sparse:

Theorem 3.1: Let s be a sequence such that log(p − s) = o(nγ)
and log s = o(n1/2−γβn) for some βn → ∞ and 0 < γ < 1/3.

Suppose that min
1≤j≤s

|µd,j |
√

σ2
1j + σ2

0j

= n−γβn where µd,j is the j th

feature mean difference. Then, for x ∼ cnγ/2 with c some positive
constant, we have

P

(

min
j≤s

Tj ≥ x and max
j>s

Tj < x

)

→ 1.

Note that asymptotically the two-sample t-test can pick up all the
important features. However we are interested in the probability of
selecting all the important features in the short run.
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3. Feature Selection: Simulation Results

We take p = 4500, s = 90, n1 = n0 = 30,Σ is equicorrelation and
µd equal mean difference. Simulation results for the probability of
getting all the important s features in the first s and 2s t-statistics
respectively.
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3. Feature Selection

Generalized Feature Selection

Two-sample t-test depends on (approximately) normal distribution.
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3. Feature Selection

Generalized Feature Selection

Two-sample t-test depends on (approximately) normal distribution.

Our test statistic Tj for feature j is defined as follows:

Tj =

∑n1
k=1 w1kj −

∑n0
k=1 w0kj

SE (
∑n1

k=1 w1kj −
∑n0

k=1 w0kj )
(6)

where wikj , i = 0, 1, is the statistic for feature j in class i for
sample k .
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3. Feature Selection

Our test statistic is a special case of Two-sample t-test, Wilcoxon
Mann-Whitney, and Two-sample Proportion test.
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3. Feature Selection

Our test statistic is a special case of Two-sample t-test, Wilcoxon
Mann-Whitney, and Two-sample Proportion test.

Theorem 3.2: Assume that the vector µd = µ1 −µ0 is sparse and
without loss of generality only first s entries are nonzero. Let s be a
sequence such that log(p − s) = o(nγ) and log s = o(nγ) for some

0 < γ < 1/3. Suppose min
1≤j≤s

|ηj | = n−γCn such that Cn/n
3γ
2 → c∗.

For t ∼ cn
γ

2 with some constant 0 < c < c∗/2 we have
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3. Feature Selection

Our test statistic is a special case of Two-sample t-test, Wilcoxon
Mann-Whitney, and Two-sample Proportion test.

Theorem 3.2: Assume that the vector µd = µ1 −µ0 is sparse and
without loss of generality only first s entries are nonzero. Let s be a
sequence such that log(p − s) = o(nγ) and log s = o(nγ) for some

0 < γ < 1/3. Suppose min
1≤j≤s

|ηj | = n−γCn such that Cn/n
3γ
2 → c∗.

For t ∼ cn
γ

2 with some constant 0 < c < c∗/2 we have

P(min
j≤s

|Tj | ≥ t, and max
j>s

|Tj | < t) → 1.
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4. Simulation Results

We use validation data to determine the optimal number of
features.

We take:

♦ p = 4500, s = 90

♦ Training: n1 = n0 = 30

♦ Validation: n1 = n0 = 30

♦ Testing: n1 = n0 = 50
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4. Simulation Results

NB dominates Fisher

ρ α = 1 m NB m F Emp. Err.NB Emp. Err.F

0.1 Q1 31.75 9.00 0.0375 0.1200

Median 63.00 13.00 0.0700 0.1400

Mean 79.98 16.42 0.0693 0.1448

Q3 122.20 23.00 0.1000 0.1700

0.5 Q1 9.00 4.00 0.0475 0.240

Median 53.50 10.00 0.2100 0.280

Mean 78.96 15.72 0.1852 0.267

Q3 155.50 25.00 0.2800 0.300

Ran. Corr. Q1 15.00 18.75 0.0100 0.0200

Median 20.00 21.00 0.0200 0.0300

Mean 22.46 24.55 0.0221 0.0394

Q3 26.25 29.25 0.0300 0.0500
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4. Simulation Results

Simulations for equicorrelation and equal mean difference with
p = 4500, s = 90, ρ = 0.5. Balanced (n1 = n0 = 30) and
unbalanced (n1 = 30, n0 = 60) respectively. The testing sample
sizes are n1 = n0 = 50 for both.
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Simulations for equicorrelation and equal mean difference with
p = 4500, s = 90, ρ = 0.5. Balanced (n1 = n0 = 30) and
unbalanced (n1 = 30, n0 = 60) respectively. The testing sample
sizes are n1 = n0 = 50 for both.
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4. Simulation Results

Similar simulation as the balanced except we use random
correlation. We randomly generate the eigenvalues of Σ in the
interval [0.5, 45.5].
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5. Applications to Gene Expression Data

Leukemia Data (p = 7129, n = 72).

Training: n1 = 24 from class ALL and n0 = 13 from class AML.

Validation: n1 = 23 from class ALL and n0 = 12 from class AML.
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5. Applications to Gene Expression Data

Leukemia Data (p = 7129, n = 72).

Training: n1 = 24 from class ALL and n0 = 13 from class AML.

Validation: n1 = 23 from class ALL and n0 = 12 from class AML.
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For NB the optimal number of genes is 43 with min. error 2/35.
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5. Applications to Gene Expression Data

Atopic Dermatitis (AD) Data (p = 54675, n = 72).

Training: n1 = 24 from class AD and n0 = 15 from class non-AD.

Validation: n1 = 25 from class AD and n0 = 8 from class non-AD.
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5. Applications to Gene Expression Data

Atopic Dermatitis (AD) Data (p = 54675, n = 72).

Training: n1 = 24 from class AD and n0 = 15 from class non-AD.

Validation: n1 = 25 from class AD and n0 = 8 from class non-AD.
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For NB the optimal number of genes is 34 with min. error 0.03.
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5. Applications to Text Data

NASA flight data set (p = 26694, n = 4567).
Training: n1 = 1081, n0 = 1486, Validation: n1 = n0 = 500 and
Testing: n1 = n0 = 500
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5. Applications to Text Data

NASA flight data set (p = 26694, n = 4567).
Training: n1 = 1081, n0 = 1486, Validation: n1 = n0 = 500 and
Testing: n1 = n0 = 500
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For NB classifier the optimal number of features selected using the
validation data set is 148 with corresponding testing error rate
0.116. For Fisher using 48 with corresponding testing error > 0.20.
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6. Conclusion

In this talk we considered a binary classification problem when the
feature dimension p is much larger than the sample size n. The
following are the main results:
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design our experiment using Naive Bayes.
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6. Conclusion

In this talk we considered a binary classification problem when the
feature dimension p is much larger than the sample size n. The
following are the main results:

� We have given conditions under which Naive Bayes is optimal
for the population model.

� Through theory, simulation and data analysis we have shown
that Naive Bayes is practical method to use than Fisher for
high-dimensional data.

� In designing binary classification experiments, Fisher requires full
correlation structure but using equicorelation structure we can
design our experiment using Naive Bayes.

� Through simulation we characterized that the two-sample t-test
can pick up all the important features as far the signal is not too
low.
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Thank You For Listening!
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