High-Dimensional Classification Methods for Sparse Signals and Their Applications in Gene Expression Data

Dawit Tadesse, Ph.D. Department of Mathematical Sciences University of Cincinnati

Biostatistics Epidemiology & Research Design Monthly Seminar Series Cincinnati Children's Hospital Medical Center

November 11, 2014

くぼう くほう くほう

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ● ○ ●

> 2. Classification with Sparse Signals

<ロ> (四) (四) (三) (三) (三)

- 1. Introduction
- > 2. Classification with Sparse Signals
- ► 3. Feature Selection

- 1. Introduction
- > 2. Classification with Sparse Signals
- ▶ 3. Feature Selection
- ▶ 4. Simulation Results

(本部) (문) (문) (문

- 1. Introduction
- > 2. Classification with Sparse Signals
- ► 3. Feature Selection
- ▶ 4. Simulation Results
- **5.** Applications to Gene Expression Data

(本部) (문) (문) (문

- 1. Introduction
- > 2. Classification with Sparse Signals
- ► 3. Feature Selection
- ▶ 4. Simulation Results
- **5.** Applications to Gene Expression Data
- 6. Conclusion

- 1. Introduction
- > 2. Classification with Sparse Signals
- ► 3. Feature Selection
- ▶ 4. Simulation Results
- **5.** Applications to Gene Expression Data
- 6. Conclusion
- 7. Selected Bibliography

米部 米油 米油 米油 とう

 High-dimensional classification arises in many contemporary statistical problems.

個 と く ヨ と く ヨ と

- High-dimensional classification arises in many contemporary statistical problems.
- Bioinformatic: disease classification using microarray, proteomics, fMRI data.

イロト イヨト イヨト

- High-dimensional classification arises in many contemporary statistical problems.
- Bioinformatic: disease classification using microarray, proteomics, fMRI data.

• Occument or text classification: E-mail spam.

イロト イポト イヨト イヨト

- High-dimensional classification arises in many contemporary statistical problems.
- Bioinformatic: disease classification using microarray, proteomics, fMRI data.

- Occument or text classification: E-mail spam.
- Voice recognition, hand written recognition, etc.

ロ と (同 と (臣 と (臣 と)

Well known classification methods include:

► ♠ Logistic Regression

・ 回 ト ・ ヨ ト ・ ヨ ト

Well known classification methods include:

- A Logistic Regression
- Fisher discriminant analysis

御 と く ヨ と く ヨ と …

Well known classification methods include:

- A Logistic Regression
- Fisher discriminant analysis
- A Naive Bayes classifier

- 10

★ 문 ► ★ 문 ►

Well known classification methods include:

- A Logistic Regression
- ► ♠ Fisher discriminant analysis
- A Naive Bayes classifier

For high-dimensional data (i.e. when p >> n), the above methods doesn't work well.

伺い イヨト イヨト

Well known classification methods include:

- A Logistic Regression
- Fisher discriminant analysis
- A Naive Bayes classifier

For high-dimensional data (i.e. when p >> n), the above methods doesn't work well.

♦ Bickel and Levina (2004) showed that Fisher breaks down for high-dimensions and suggested Naive Bayes rule.

伺下 イヨト イヨト

Well known classification methods include:

- A Logistic Regression
- Fisher discriminant analysis
- A Naive Bayes classifier

For high-dimensional data (i.e. when p >> n), the above methods doesn't work well.

♦ Bickel and Levina (2004) showed that Fisher breaks down for high-dimensions and suggested Naive Bayes rule.

♦ Fan and Fan (2008) showed that even for Naive Bayes using all the features increases the error rate and suggested FAIR.

同 と く ヨ と く ヨ と

・ 同 ト ・ ヨ ト ・ ヨ ト …

♦ Fan and etal.(2012) showed that Naive Bayes increase error rates if there is correlation among the features.

伺い イヨト イヨト

♦ Fan and etal.(2012) showed that Naive Bayes increase error rates if there is correlation among the features.

♦ My Works:

伺 と く き と く き とう

♦ Fan and etal.(2012) showed that Naive Bayes increase error rates if there is correlation among the features.

• My Works:

- I will show that even under high-correlation Naive Bayes can perform better than Fisher.
- I propose a generalized test statistic and give the condition under which it selects important features.

伺い イヨト イヨト

Fisher discriminant rule

$$\delta_{\mathsf{F}}(\mathbf{X}, \boldsymbol{\mu}_{d}, \boldsymbol{\mu}_{a}, \boldsymbol{\Sigma}) = \mathbf{1} \left\{ \boldsymbol{\mu}_{d}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}_{a}) > 0 \right\},$$
(1)

御 と く ヨ と く ヨ と …

Fisher discriminant rule

$$\delta_{\mathcal{F}}(\boldsymbol{X},\boldsymbol{\mu}_{d},\boldsymbol{\mu}_{a},\boldsymbol{\Sigma}) = \mathbf{1} \left\{ \boldsymbol{\mu}_{d}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X} - \boldsymbol{\mu}_{a}) > 0 \right\},$$
(1)

with corresponding misclassification error rate

$$W(\delta_F, \boldsymbol{\theta}) = \bar{\boldsymbol{\Phi}} \left(\frac{(\boldsymbol{\mu}_d^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_d)^{1/2}}{2} \right).$$
(2)

回 と く ヨ と く ヨ と …

Naive Bayes rule

$$\delta_{NB}(\boldsymbol{X}, \boldsymbol{\mu}_{d}, \boldsymbol{\mu}_{a}, D) = \mathbf{1} \left\{ \boldsymbol{\mu}_{d}^{\mathsf{T}} D^{-1}(\boldsymbol{X} - \boldsymbol{\mu}_{a}) > 0 \right\}, \qquad (3)$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Naive Bayes rule

$$\delta_{NB}(\boldsymbol{X}, \boldsymbol{\mu}_{d}, \boldsymbol{\mu}_{a}, D) = \mathbf{1} \left\{ \boldsymbol{\mu}_{d}^{\mathsf{T}} D^{-1}(\boldsymbol{X} - \boldsymbol{\mu}_{a}) > 0 \right\}, \qquad (3)$$

whose misclassification error rate is

$$W(\delta_{NB},\boldsymbol{\theta}) = \bar{\Phi}\left(\frac{\boldsymbol{\mu}_{d}^{T} D^{-1} \boldsymbol{\mu}_{d}}{2(\boldsymbol{\mu}_{d}^{T} D^{-1} \boldsymbol{\Sigma} D^{-1} \boldsymbol{\mu}_{d})^{1/2}}\right).$$
 (4)

回 と く ヨ と く ヨ と …

Dawit Tadesse, Ph.D. Department of Mathematical Sciences U High-Dimensional Classification Methods for Sparse Signals and

Definition: Suppose that $\mu_d = (\alpha_1, \alpha_2, \dots, \alpha_s, 0, \dots, 0)^T$ is the $p \times 1$ mean difference vector where $\alpha_j \in \mathbb{R} \setminus \{0\}, j = 1, 2, \dots, s$. We say that μ_d is sparse if s = o(p). Signal is defined as

$$C_s = \mu_d^T D^{-1} \mu_d = \sum_{j=1}^{\infty} \frac{\alpha_j}{\sigma_j^2}$$
 where σ_j^2 is the common variance for

feature j in the two classes.

Examples of Sparse situations in real life:

(周) (ヨ) (ヨ) (ヨ)

Definition: Suppose that $\mu_d = (\alpha_1, \alpha_2, \dots, \alpha_s, 0, \dots, 0)^T$ is the $p \times 1$ mean difference vector where $\alpha_j \in \mathbb{R} \setminus \{0\}, j = 1, 2, \dots, s$. We say that μ_d is sparse if s = o(p). Signal is defined as $C_s = \mu_d^T D^{-1} \mu_d = \sum_{i=1}^s \frac{\alpha_i^2}{\sigma_i^2} \text{ where } \sigma_j^2 \text{ is the common variance for}$

 $C_s = \mu_d' D^{-1} \mu_d = \sum_{j=1}^{j} \frac{\sigma_j^2}{\sigma_j^2}$ where σ_j^2 is the common variance for feature j in the two classes.

Examples of Sparse situations in real life:

★ Gene Expression data (Eg: p genes from Leukemia and Normal, only s of them distinguish Leukemia and Normal).

・吊り ・ヨン ・ヨン ・ヨ

Definition: Suppose that $\mu_d = (\alpha_1, \alpha_2, \dots, \alpha_s, 0, \dots, 0)^T$ is the $p \times 1$ mean difference vector where $\alpha_j \in \mathbb{R} \setminus \{0\}, j = 1, 2, \dots, s$. We say that μ_d is sparse if s = o(p). Signal is defined as $C_s = \mu_d^T D^{-1} \mu_d = \sum_{j=1}^s \frac{\alpha_j^2}{\sigma_j^2} \text{ where } \sigma_j^2 \text{ is the common variance for}$

feature j in the two classes.

Examples of Sparse situations in real life:

- ➤ Gene Expression data (Eg: p genes from Leukemia and Normal, only s of them distinguish Leukemia and Normal).
- ➤ Author Identification (Eg: two novels from two authors and there are only s few words which distinguish them).

Theorem 2.1: If $m \leq s, \mu_d^{(m)} = (\alpha, \alpha, \dots, \alpha)^T = \alpha \mathbf{1}, \alpha \neq 0$ and $\Sigma^{(m)}$ is the truncated $m \times m$ equicorrelation matrix, then we have

$$W(\delta_F, \theta^{(m)}) = W(\delta_{NB}, \theta^{(m)}),$$

where $\theta^{(m)}$ is the truncated parameter.

Theorem 2.1: If $m \leq s, \mu_d^{(m)} = (\alpha, \alpha, \dots, \alpha)^T = \alpha \mathbf{1}, \alpha \neq 0$ and $\Sigma^{(m)}$ is the truncated $m \times m$ equicorrelation matrix, then we have

$$W(\delta_F, \theta^{(m)}) = W(\delta_{NB}, \theta^{(m)}),$$

where $\theta^{(m)}$ is the truncated parameter.

We **define** $\bar{\rho}^{(m)}$ and $\rho_{\max}^{(m)}$ are equicorrelation matrices with off diagonals the mean of the correlation coefficients and largest of the absolute values of the correlation coefficients respectively.

Theorem 2.2: Suppose $\rho^{(m)}$ is an $m \times m$ correlation matrix and $\mu_d^{(m)}$ is an $m \times 1$ mean difference vector.

Theorem 2.2: Suppose $\rho^{(m)}$ is an $m \times m$ correlation matrix and $\mu_d^{(m)}$ is an $m \times 1$ mean difference vector. (a)

$$\bar{\Phi}\left(\frac{\sqrt{(\boldsymbol{\mu}_d^{(m)})^T(D^{(m)})^{-1}\boldsymbol{\mu}_d^{(m)}}}{2\sqrt{\lambda_{\min}(\boldsymbol{\rho}^{(m)})}}\right) \leq W(\delta_w, \boldsymbol{\theta}^{(m)}) \leq \bar{\Phi}\left(\frac{\sqrt{(\boldsymbol{\mu}_d^{(m)})^T(D^{(m)})^{-1}\boldsymbol{\mu}_d^{(m)}}}{2\sqrt{\lambda_{\max}(\boldsymbol{\rho}^{(m)})}}\right)$$

(3)

Theorem 2.2: Suppose $\rho^{(m)}$ is an $m \times m$ correlation matrix and $\mu_d^{(m)}$ is an $m \times 1$ mean difference vector. (a)

$$\bar{\Phi}\left(\frac{\sqrt{(\boldsymbol{\mu}_d^{(m)})^{\mathcal{T}}(D^{(m)})^{-1}\boldsymbol{\mu}_d^{(m)}}}{2\sqrt{\lambda_{\min}(\boldsymbol{\rho}^{(m)})}}\right) \leq W(\delta_w, \boldsymbol{\theta}^{(m)}) \leq \bar{\Phi}\left(\frac{\sqrt{(\boldsymbol{\mu}_d^{(m)})^{\mathcal{T}}(D^{(m)})^{-1}\boldsymbol{\mu}_d^{(m)}}}{2\sqrt{\lambda_{\max}(\boldsymbol{\rho}^{(m)})}}\right)$$

(**b**) Suppose, further, that $\lambda_{\min}(\rho^{(m)}) \geq \lambda_{\min}(\bar{\rho}^{(m)}) = 1 - \bar{\rho}$. Then

$$\bar{\Phi}\left(\frac{\sqrt{(\boldsymbol{\mu}_d^{(m)})^{\mathsf{T}}(\mathcal{D}^{(m)})^{-1}\boldsymbol{\mu}_d^{(m)}}}{2\sqrt{1-\bar{\rho}}}\right) \leq W(\delta_{\mathsf{w}},\boldsymbol{\theta}^{(m)}) \leq \bar{\Phi}\left(\frac{\sqrt{(\boldsymbol{\mu}_d^{(m)})^{\mathsf{T}}(\mathcal{D}^{(m)})^{-1}\boldsymbol{\mu}_d^{(m)}}}{2\sqrt{1+(m-1)\rho_{\mathsf{max}}}}\right)$$

where w = F or w = NB for the truncated parameter $\theta^{(m)}$.

Dawit Tadesse, Ph.D. Department of Mathematical Sciences U High-Dimensional Classification Methods for Sparse Signals and

3. Feature Selection

Goal of Feature Selection. How do i pick the best markers? Which method? Finding a needle in haystack?

白 と く ヨ と く ヨ と …

3. Feature Selection

Goal of Feature Selection. How do i pick the best markers? Which method? Finding a needle in haystack?

A (B) > A (B) > A (B)

(4回) (4回) (4回)

For unequal sample sizes, unequal variance, the absolute value of the two-sample t-statistic for feature j is defined as

$$T_{j} = \frac{|\bar{X}_{1j} - \bar{X}_{0j}|}{\sqrt{S_{1j}^{2}/n_{1} + S_{0j}^{2}/n_{0}}}, \quad j = 1, \dots, p.$$
(5)

A B K A B K

For unequal sample sizes, unequal variance, the absolute value of the two-sample t-statistic for feature j is defined as

$$T_{j} = \frac{|\bar{X}_{1j} - \bar{X}_{0j}|}{\sqrt{S_{1j}^{2}/n_{1} + S_{0j}^{2}/n_{0}}}, \quad j = 1, \dots, p.$$
(5)

伺下 イヨト イヨト

Fan and Fan (2008) gave the conditions under which the two-sample t-test can select all the important features with probability 1.

For unequal sample sizes, unequal variance, the absolute value of the two-sample t-statistic for feature j is defined as

$$T_{j} = \frac{|\bar{X}_{1j} - \bar{X}_{0j}|}{\sqrt{S_{1j}^{2}/n_{1} + S_{0j}^{2}/n_{0}}}, \quad j = 1, \dots, p.$$
(5)

Fan and Fan (2008) gave the conditions under which the two-sample t-test can select all the important features with probability 1.

In this talk we will use the two-sample t-test as feature selection method.

3. Feature Selection

They stated their theorem as follows assuming μ_d is sparse:

Theorem 3.1: Let *s* be a sequence such that $\log(p - s) = o(n^{\gamma})$ and $\log s = o(n^{1/2-\gamma}\beta_n)$ for some $\beta_n \to \infty$ and $0 < \gamma < 1/3$. Suppose that $\min_{1 \le j \le s} \frac{|\mu_{d,j}|}{\sqrt{\sigma_{1j}^2 + \sigma_{0j}^2}} = n^{-\gamma}\beta_n$ where $\mu_{d,j}$ is the *j*th

feature mean difference. Then, for $x \sim c n^{\gamma/2}$ with c some positive constant, we have

$$P\left(\min_{j \leq s} T_j \geq x \text{ and } \max_{j > s} T_j < x
ight)
ightarrow 1.$$

伺い イヨト イヨト 三日

3. Feature Selection

They stated their theorem as follows assuming μ_d is sparse:

Theorem 3.1: Let *s* be a sequence such that $\log(p - s) = o(n^{\gamma})$ and $\log s = o(n^{1/2-\gamma}\beta_n)$ for some $\beta_n \to \infty$ and $0 < \gamma < 1/3$. Suppose that $\min_{1 \le j \le s} \frac{|\mu_{d,j}|}{\sqrt{\sigma_{1j}^2 + \sigma_{0j}^2}} = n^{-\gamma}\beta_n$ where $\mu_{d,j}$ is the *j*th

feature mean difference. Then, for $x \sim c n^{\gamma/2}$ with c some positive constant, we have

$$P\left(\min_{j \leq s} T_j \geq x \text{ and } \max_{j > s} T_j < x
ight)
ightarrow 1.$$

Note that asymptotically the two-sample t-test can pick up all the important features. However we are interested in the probability of selecting all the important features in the short run.

3. Feature Selection: Simulation Results

We take $p = 4500, s = 90, n_1 = n_0 = 30, \Sigma$ is equicorrelation and μ_d equal mean difference. Simulation results for the probability of getting all the important *s* features in the first *s* and 2*s* t-statistics respectively.

3. Feature Selection: Simulation Results

We take $p = 4500, s = 90, n_1 = n_0 = 30, \Sigma$ is equicorrelation and μ_d equal mean difference. Simulation results for the probability of getting all the important *s* features in the first *s* and 2*s* t-statistics respectively.

Dawit Tadesse, Ph.D. Department of Mathematical Sciences U High-Dimensional Classification Methods for Sparse Signals and

Generalized Feature Selection

Two-sample t-test depends on (approximately) normal distribution.

御 と く ヨ と く ヨ と …

Generalized Feature Selection

Two-sample t-test depends on (approximately) normal distribution.

Our test statistic T_j for feature j is defined as follows:

伺い イヨト イヨト

Generalized Feature Selection

Two-sample t-test depends on (approximately) normal distribution.

Our test statistic T_i for feature *j* is defined as follows:

$$T_{j} = \frac{\sum_{k=1}^{n_{1}} w_{1kj} - \sum_{k=1}^{n_{0}} w_{0kj}}{SE(\sum_{k=1}^{n_{1}} w_{1kj} - \sum_{k=1}^{n_{0}} w_{0kj})}$$
(6)

(4月) (3日) (3日) 日

where w_{ikj} , i = 0, 1, is the statistic for feature j in class i for sample k.

Our test statistic is a special case of Two-sample t-test, Wilcoxon Mann-Whitney, and Two-sample Proportion test.

向下 イヨト イヨト

Our test statistic is a special case of Two-sample t-test, Wilcoxon Mann-Whitney, and Two-sample Proportion test.

Theorem 3.2: Assume that the vector $\mu_d = \mu_1 - \mu_0$ is sparse and without loss of generality only first *s* entries are nonzero. Let *s* be a sequence such that $\log(p - s) = o(n^{\gamma})$ and $\log s = o(n^{\gamma})$ for some $0 < \gamma < 1/3$. Suppose $\min_{1 \le j \le s} |\eta_j| = n^{-\gamma} C_n$ such that $C_n/n^{\frac{3\gamma}{2}} \to c^*$. For $t \sim cn^{\frac{\gamma}{2}}$ with some constant $0 < c < c^*/2$ we have

伺い イヨト イヨト 三日

Our test statistic is a special case of Two-sample t-test, Wilcoxon Mann-Whitney, and Two-sample Proportion test.

Theorem 3.2: Assume that the vector $\mu_d = \mu_1 - \mu_0$ is sparse and without loss of generality only first *s* entries are nonzero. Let *s* be a sequence such that $\log(p - s) = o(n^{\gamma})$ and $\log s = o(n^{\gamma})$ for some $0 < \gamma < 1/3$. Suppose $\min_{1 \le j \le s} |\eta_j| = n^{-\gamma} C_n$ such that $C_n/n^{\frac{3\gamma}{2}} \to c^*$. For $t \sim cn^{\frac{\gamma}{2}}$ with some constant $0 < c < c^*/2$ we have

$$P(\min_{j \leq s} |T_j| \geq t, \text{ and } \max_{j > s} |T_j| < t) \rightarrow 1.$$

伺い イヨト イヨト 三日

We use validation data to determine the optimal number of features.

We take:

- ◊ *p* = 4500, *s* = 90
- \diamond Training: $n_1 = n_0 = 30$
- \diamond Validation: $n_1 = n_0 = 30$
- \diamond Testing: $n_1 = n_0 = 50$

NB dominates Fisher

ρ	$\alpha = 1$	<i>m</i> NB	<i>m</i> F	Emp. Err.NB	Emp. Err.F
0.1	Q1	31.75	9.00	0.0375	0.1200
	Median	63.00	13.00	0.0700	0.1400
	Mean	79.98	16.42	0.0693	0.1448
	Q3	122.20	23.00	0.1000	0.1700
0.5	Q1	9.00	4.00	0.0475	0.240
	Median	53.50	10.00	0.2100	0.280
	Mean	78.96	15.72	0.1852	0.267
	Q3	155.50	25.00	0.2800	0.300
Ran. Corr.	Q1	15.00	18.75	0.0100	0.0200
	Median	20.00	21.00	0.0200	0.0300
	Mean	22.46	24.55	0.0221	0.0394
	Q3	26.25	29.25	0.0300	0.0500

Dawit Tadesse, Ph.D. Department of Mathematical Sciences U High-Dimensional Classification Methods for Sparse Signals and

< 日 > < 四 > < 回 > < 回 > < 回 > <

Simulations for equicorrelation and equal mean difference with $p = 4500, s = 90, \rho = 0.5$. Balanced $(n_1 = n_0 = 30)$ and unbalanced $(n_1 = 30, n_0 = 60)$ respectively. The testing sample sizes are $n_1 = n_0 = 50$ for both.

▲□ > < E > < E > E < <</p>

Simulations for equicorrelation and equal mean difference with $p = 4500, s = 90, \rho = 0.5$. Balanced $(n_1 = n_0 = 30)$ and unbalanced $(n_1 = 30, n_0 = 60)$ respectively. The testing sample sizes are $n_1 = n_0 = 50$ for both.

イロン イヨン イヨン ・ ヨン

Similar simulation as the balanced except we use random correlation. We randomly generate the eigenvalues of Σ in the interval [0.5, 45.5].

御 と く ヨ と く ヨ と …

Similar simulation as the balanced except we use random correlation. We randomly generate the eigenvalues of Σ in the interval [0.5, 45.5].

- 4 同 2 4 三 2 4 三

Leukemia Data (p = 7129, n = 72).

Training: $n_1 = 24$ from class ALL and $n_0 = 13$ from class AML.

Validation: $n_1 = 23$ from class ALL and $n_0 = 12$ from class AML.

▲冊→ ▲臣→ ▲臣→ 三臣 - 釣�??

Leukemia Data (p = 7129, n = 72).

Training: $n_1 = 24$ from class ALL and $n_0 = 13$ from class AML.

Validation: $n_1 = 23$ from class ALL and $n_0 = 12$ from class AML.

For NB the optimal number of genes is 43 with min. error 2/35.

Dawit Tadesse, Ph.D. Department of Mathematical Sciences U High-Dimensional Classification Methods for Sparse Signals and

Atopic Dermatitis (AD) Data (p = 54675, n = 72).

Training: $n_1 = 24$ from class AD and $n_0 = 15$ from class non-AD.

Validation: $n_1 = 25$ from class AD and $n_0 = 8$ from class non-AD.

Atopic Dermatitis (AD) Data (p = 54675, n = 72).

Training: $n_1 = 24$ from class AD and $n_0 = 15$ from class non-AD.

Validation: $n_1 = 25$ from class AD and $n_0 = 8$ from class non-AD.

For NB the optimal number of genes is 34 with min. error 0.03.

Dawit Tadesse, Ph.D. Department of Mathematical Sciences U High-Dimensional Classification Methods for Sparse Signals and

5. Applications to Text Data

NASA flight data set (p = 26694, n = 4567). Training: $n_1 = 1081$, $n_0 = 1486$, Validation: $n_1 = n_0 = 500$ and Testing: $n_1 = n_0 = 500$

<回と < 回と < 回と = 回

5. Applications to Text Data

NASA flight data set (p = 26694, n = 4567). Training: $n_1 = 1081$, $n_0 = 1486$, Validation: $n_1 = n_0 = 500$ and Testing: $n_1 = n_0 = 500$

For NB classifier the optimal number of features selected using the validation data set is 148 with corresponding testing error rate 0.116. For Fisher using 48 with corresponding testing error > 0.20.

In this talk we considered a binary classification problem when the feature dimension p is much larger than the sample size n. The following are the main results:

回 と く ヨ と く ヨ と …

In this talk we considered a binary classification problem when the feature dimension p is much larger than the sample size n. The following are the main results:

■ We have given conditions under which Naive Bayes is optimal for the population model.

伺 と く き と く き とう

In this talk we considered a binary classification problem when the feature dimension p is much larger than the sample size n. The following are the main results:

■ We have given conditions under which Naive Bayes is optimal for the population model.

■ Through theory, simulation and data analysis we have shown that Naive Bayes is practical method to use than Fisher for high-dimensional data.

伺い イヨト イヨト

In this talk we considered a binary classification problem when the feature dimension p is much larger than the sample size n. The following are the main results:

■ We have given conditions under which Naive Bayes is optimal for the population model.

■ Through theory, simulation and data analysis we have shown that Naive Bayes is practical method to use than Fisher for high-dimensional data.

■ In designing binary classification experiments, Fisher requires full correlation structure but using equicorelation structure we can design our experiment using Naive Bayes.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

In this talk we considered a binary classification problem when the feature dimension p is much larger than the sample size n. The following are the main results:

■ We have given conditions under which Naive Bayes is optimal for the population model.

■ Through theory, simulation and data analysis we have shown that Naive Bayes is practical method to use than Fisher for high-dimensional data.

■ In designing binary classification experiments, Fisher requires full correlation structure but using equicorelation structure we can design our experiment using Naive Bayes.

■ Through simulation we characterized that the two-sample t-test can pick up all the important features as far the signal is not too low.

8. Selected Bibliography

• Bickel, P. J. and Levina, E. (2004). Some theory for Fisher's linear discriminant function, "naive Bayes", and some alternatives when there are many more variables than observations. Bernoulli **10**, 989-1010.

• Cao, Hongyuan (2007). Moderate Deviations For Two Sample T-Statistics. ESAIM: Probability and Statistics, Vol. **11**, 264-271.

• Fan, J. and Fan, Y. (2008). High dimensional classification using features annealed independence rules. Ann. Statist., **36**, 2605-2637.

• Fan, J., Feng, Y., and Tong, X. (2012). A road to classification in high dimensional space: the regularized optimal affine discriminant. J. R. Statist. Soc. B. **74**, 745-771.

• Richard A. Johnson and Dean W. Wichern (6th edition). Applied Multivariate Statistical Analysis. Pearson Prentice Hall, 2007.

Thank You For Listening!

Dawit Tadesse, Ph.D. Department of Mathematical Sciences U High-Dimensional Classification Methods for Sparse Signals and