Clustered Binary Logistic Regression in Teratology Data

Jorge G. Morel, Ph.D.
Adjunct Professor
University of Maryland Baltimore County

Division of Biostatistics and Epidemiology Cincinnati Children's Hospital Medical Center. September 9, 2014

Outline

1) The Teratology Experiment: All Mice Are Created Equal, but Some Are More Equal
2) Overdispersion: To be or not to be
3) Overdispersion Models for Binomial-type of Data
4) An Omnibus Goodness-of-fit Test
5) Final Remarks

All Mice Are Created Equal, but Some Are More Equal

Cincinnati Children's Hospital Medical Center

All Mice Are Created Equal, but Some Are More Equal
Hartsfield et al. (1990), Morel and Neerchal (1997), PROC FMM Documentation

Two-way factorial design with n=81 pregnant C57BL/6J mice

- Purpose: to investigate synergistic effect of the anticonvulsant phenytoin (PHT) and thrichloropropane oxide (TCPO) on the prenatal development of inbred mice
- Presence or absence of ossification at the phalanges at both the left and right forepaws is considered a measure of teratogenic effect
- Outcome: presence or absence of ossification at the phalanges. For simplicity we analyze outcome on the left middle third phalanx

All Mice Are Created Equal, but Some Are More Equal

Ossification Data*

Group	Observations
Control	$8 / 8,9 / 9,7 / 9,0 / 5,3 / 3,5 / 8,9 / 10,5 / 8,5 / 8,1 / 6,0 / 5,8 / 8,9 / 10,5 / 5,4 / 7,9 / 10,6 / 6,3 / 5$
Sham	$8 / 9,7 / 10,10 / 10,1 / 6,6 / 6,1 / 9,8 / 9,6 / 7,5 / 5,7 / 9,2 / 5,5 / 6,2 / 8,1 / 8,0 / 2,7 / 8,5 / 7$
PHT	$1 / 9,4 / 9,3 / 7,4 / 7,0 / 7,0 / 4,1 / 8,1 / 7,2 / 7,2 / 8,1 / 7,0 / 2,3 / 10,3 / 7,2 / 7,0 / 8,0 / 8,1 / 10,1 / 1$
TCPO	$0 / 5,7 / 10,4 / 4,8 / 11,6 / 10,6 / 9,3 / 4,2 / 8,0 / 6,0 / 9,3 / 6,2 / 9,7 / 9,1 / 10,8 / 8,6 / 9$
PHT+TCPO	$2 / 2,0 / 7,1 / 8,7 / 8,0 / 10,0 / 4,0 / 6,0 / 7,6 / 6,1 / 6,1 / 7$

*Number of fetuses showing ossification / litter size. PHT: phenytoin; TCPO: trichloropropene oxide.

- Presence or absence of ossification at the phalanges at both the left and right forepaws is considered a measure of teratogenic effect
- The experiment thus can be seen as a 2×2 factorial, with PHT and TCPO as the two factors
- The levels of PHT are $60 \mathrm{mg} / \mathrm{kg}$ and $0 \mathrm{mg} / \mathrm{kg}$, and the levels of TCPO are $100 \mathrm{mg} / \mathrm{kg}$ and $0 \mathrm{mg} / \mathrm{kg}$.

All Mice Are Created Equal, but Some Are More Equal

Ossification Data*

Group	Observations
PHT+TCPO	$2 / 2,0 / 7,1 / 8,7 / 8,0 / 10,0 / 4,0 / 6,0 / 7,6 / 6,1 / 6,1 / 7$

$\hat{\pi}=\frac{\sum_{j=1}^{11} t_{j}}{\sum_{j=1}^{11} m_{j}}=0.2535$
If t_{j} 's were distributed as Binomial random variables with parameters $\left(\pi, \mathrm{m}_{\mathrm{j}}\right)$
$\hat{\operatorname{Var}}(\hat{\pi})=\frac{\hat{\pi}(1-\hat{\pi})}{\sum_{\mathrm{j}=1}^{11} \mathrm{~m}_{\mathrm{j}}}=0.0027$
A consistent estimator of variance of $\hat{\pi}$ is

$$
\tilde{\operatorname{Var}}(\hat{\pi})=\frac{\mathrm{n} \sum_{\mathrm{j}=1}^{\mathrm{n}}\left(\mathrm{t}_{\mathrm{j}}-\mathrm{m}_{\mathrm{j}} \hat{\pi}\right)^{2}}{\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{~m}_{\mathrm{j}}\right)^{2}(\mathrm{n}-1)}=0.0142
$$

Overdispersion: To be or not to be.

- Overdispersion is also known as Extra Variation
- Arises when Binary/Count data exhibit variances larger than those permitted by the Binomial/Poisson model
- Usually caused by clustering or a lack of independence
- It might be also caused by a model misspecification

"In fact, some would maintain that over-dispersion is the norm in practice and nominal dispersion the exception."

McCullagh and Nelder (1989, Pages 124-125)

- Some Distributions to Model Binomial Data with Overdispersion:
o Beta-binomial
o Random-clumped Binomial
o Zero-inflated Binomial
o Generalized Binomial
- Some Distributions to Model Count Data with Overdispersion:
o Negative-binomial
o Zero-inflated Poisson
o Zero-inflated Negative-binomial
o Hurdle Poisson
o Hurdle Negative-binomial
o Generalized Poisson

Consequences of ignoring overdispersion:

In a simulation 1000 datasets were generated each dataset with $\mathrm{n}=20$ subjects. Each subject had $\mathrm{m}=5$ correlated Bernoulli outcomes with $\boldsymbol{\pi = 0 . 6}$. We wished to test H_{0} : " $\pi=0.6$ "

Inflation of the Actual Type I Error Rate at Nominal Level $\alpha=0.05$

Correlation among Bernoulli Outcomes	Actual Type I Error Rate
0.3	0.160
0.5	0.197

Overdispersion: To be or not to be.

Consequences of ignoring overdispersion:

- Standard errors of Naïve estimates are smaller than they should be.
- This results in inflated Type I Error Rates, i.e., False Positive Rates are larger than nominal ones.
- Furthermore, coverage probabilities of confidence intervals are lower than nominal levels.
- Erroneous inferences !!!

Overdispersion Models for Binomial-type of Data: The Beta-binomial Distribution Skellam (1948)

These babies use about $\mathbf{m}=\mathbf{2 0}$ diapers (changes) per week. Let us count the number of diapers leaking (T)
The Beta-binomial assumes different probabilities of leakage for different babies, drawn from a Beta distribution.

Thus $\mathrm{T} \mid \mathrm{P} \sim \operatorname{Binomial}(\mathrm{P} ; \mathrm{m})$
It is further assumed P 's are i.i.d. $\sim \operatorname{Beta}(\mathrm{a}, \mathrm{b})$
$a=C \pi, \quad b=C(1-\pi), \quad C=\left(1-\rho^{2}\right) / \rho^{2}$
Then the unconditional distribution of T is Beta-binomial

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{T}=\mathrm{t})=\binom{\mathrm{m}}{\mathrm{t}} \frac{\Gamma(\mathrm{C})}{\Gamma(\mathrm{m}+\mathrm{C})} \frac{\Gamma(\mathrm{t}+\mathrm{C} \pi) \Gamma\{\mathrm{m}-\mathrm{t}+\mathrm{C}(1-\pi)\}}{\Gamma(\mathrm{C} \pi) \Gamma\{\mathrm{C}(1-\pi)\}}, \\
& \mathrm{t}=0,1, \ldots, \mathrm{~m}
\end{aligned}
$$

Overdispersion Models for Binomial-type of Data: The Random-clumped Binomial Distribution (aka Binomial Cluster in PROC FMM)
(Morel and Nagaraj, 1993; Morel and Neerchal, 1997; Neerchal and Morel, 1998) Results from an effort to model meaningfully the physical mechanism behind the extra variation

Let $\mathrm{Y}, \mathrm{Y}_{1}^{0}, \ldots, \mathrm{Y}_{\mathrm{m}}^{0}$ be i.i.d. Bernoulli (π)
Let U_{1}, \ldots, U_{m} be i.i.d. Uniform $(0,1)$
For each $i, i=1, \ldots, m$, define Y_{i} as

$$
\mathrm{Y}_{\mathrm{i}}=\mathrm{YI}\left(\mathrm{U}_{\mathrm{i}} \leq \rho\right)+\mathrm{Y}_{\mathrm{i}}^{0} \mathrm{I}\left(\mathrm{U}_{\mathrm{i}}>\rho\right)
$$

where $\mathrm{I}($.$) is an indicator function and 0 \leq \rho \leq 1$
Then, define T as

$$
\mathrm{T}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{Y}_{\mathrm{i}}
$$

Overdispersion Models for Binomial-type of Data: The Random-clumped Binomial Distribution

It can be shown:

$$
\mathrm{T}=\mathrm{YN}+(\mathrm{X} \mid \mathrm{N}),
$$

where $\quad \mathrm{Y} \sim \operatorname{Bernoulli}(\pi)$
$\mathrm{N} \sim \operatorname{Binomial}(\rho ; m), \quad \mathrm{Y}$ and N independent $X \mid N \sim \operatorname{Binomial}(\pi ; m-N)$ if $N<m$

- The outcome given by Y is duplicated a random number of times N , $\mathrm{N}=0,1, \ldots, \mathrm{~m}$. This is represented by YN .
- The remaining $\mathrm{m}-\mathrm{N}$ units within the cluster provide independent Bernoulli responses. This is represented by ($\mathrm{X} \mid \mathrm{N}$)

Overdispersion Models for Binomial-type of Data: The Random-clumped Binomial

 Distribution

YN might characterize the influence of a "leader" in a stop-smoking or a stop-drinking program, or a genetic trait which is passed on with a certain probability to offspring of the same mother

Overdispersion Models for Binomial-type of Data: The Random-clumped Binomial Distribution

$$
\begin{aligned}
& \operatorname{Prob}(\mathrm{T}=\mathrm{t})=\pi \operatorname{Pr}\left(\mathrm{X}_{1}=\mathrm{t}\right)+(1-\pi) \operatorname{Pr}\left(\mathrm{X}_{2}=\mathrm{t}\right), \\
& \mathrm{t}=0,1 \ldots, \mathrm{~m},
\end{aligned}
$$

$$
X_{1} \sim \operatorname{Binomial}\{(1-\rho) \pi+\rho ; m\},
$$

$$
X_{2} \sim \operatorname{Binomial}\{(1-\rho) \pi ; m\}
$$

Overdispersion Models for Binomial-type of Data: The Beta-binomial and Randomclumped Binomial Distributions

$$
\begin{aligned}
& \text { 1) } \quad \mathrm{E}(\mathrm{~T})=\mathrm{m} \pi \\
& \text { 2) } \quad \operatorname{Var}(\mathrm{T})=\mathrm{m} \pi(1-\pi)\left\{1+(\mathrm{m}-1) \rho^{2}\right\}
\end{aligned}
$$

Identical Probability Functions for m=2

Beta-binomial and Binomial

Cincinnati Children's Hospital Medical Center

Binomial and Random-clumped Binomial

All Mice Are Created Equal, but Some Are More Equal

RECALL:

Ossification Data*

Group	Observations
Control	$8 / 8,9 / 9,7 / 9,0 / 5,3 / 3,5 / 8,9 / 10,5 / 8,5 / 8,1 / 6,0 / 5,8 / 8,9 / 10,5 / 5,4 / 7,9 / 10,6 / 6,3 / 5$
Sham	$8 / 9,7 / 10,10 / 10,1 / 6,6 / 6,1 / 9,8 / 9,6 / 7,5 / 5,7 / 9,2 / 5,5 / 6,2 / 8,1 / 8,0 / 2,7 / 8,5 / 7$
PHT	$1 / 9,4 / 9,3 / 7,4 / 7,0 / 7,0 / 4,1 / 8,1 / 7,2 / 7,2 / 8,1 / 7,0 / 2,3 / 10,3 / 7,2 / 7,0 / 8,0 / 8,1 / 10,1 / 1$
TCPO	$0 / 5,7 / 10,4 / 4,8 / 11,6 / 10,6 / 9,3 / 4,2 / 8,0 / 6,0 / 9,3 / 6,2 / 9,7 / 9,1 / 10,8 / 8,6 / 9$
PHT+TCPO	$2 / 2,0 / 7,1 / 8,7 / 8,0 / 10,0 / 4,0 / 6,0 / 7,6 / 6,1 / 6,1 / 7$

*Number of fetuses showing ossification / litter size.
PHT: phenytoin; TCPO: trichloropropene oxide.

All Mice Are Created Equal, but Some Are More Equal

Let $\pi_{\mathrm{j}}\left(\mathrm{TCPO}_{\mathrm{j}}, \mathrm{PHT}_{\mathrm{j}}, \mathrm{TCPO}_{\mathrm{j}} * \mathrm{PHT}_{\mathrm{j}}\right) \equiv \pi_{\mathrm{j}}$ be the probability of ossification $j=1,2, \ldots, 81$

$$
\mathrm{TCPO}_{\mathrm{j}}=\left\{\begin{array}{ll}
1 & \text { if TCPO is present } \\
0 & \text { if TCPO is absent }
\end{array} \quad \mathrm{PHT}_{\mathrm{j}}= \begin{cases}1 & \text { if PHT is present } \\
0 & \text { if PHT is absent }\end{cases}\right.
$$

Let T_{j} denote the total number of fetuses for which ossification of the left middle third phalanx occurred out of a litter containing m_{j} fetuses.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{j}} \sim \operatorname{Binomial}\left(\pi_{\mathrm{j}} ; \mathrm{m}_{\mathrm{j}}\right) \\
& \mathrm{T}_{\mathrm{j}} \sim \operatorname{Beta-binomial}\left(\pi_{\mathrm{j}}, \rho ; \mathrm{m}_{\mathrm{j}}\right) \\
& \mathrm{T}_{\mathrm{j}} \sim \operatorname{Random}-\operatorname{clumped}\left(\pi_{\mathrm{j}}, \rho ; \mathrm{m}_{\mathrm{j}}\right)
\end{aligned}
$$

Link functions:

$\ln \left\{\frac{\pi_{\mathrm{j}}}{1-\pi_{\mathrm{j}}}\right\}=\beta_{0}+\beta_{1} * \mathrm{TCPO}_{\mathrm{j}}+\beta_{2} * \mathrm{PHT}_{\mathrm{j}}+\beta_{3} * \mathrm{TCPO}_{\mathrm{j}} * \mathrm{PHT}_{\mathrm{j}} \quad \ln \left\{\frac{\rho}{1-\rho}\right\}=\alpha_{0}$

All Mice Are Created Equal, but Some Are More Equal

```
data ossi;
    length tx $8;
    input tx$ n @@;
    do i=1 to n;
        input t m @@;
        output;
    end;
    drop n i;
    datalines
Control 18 8 8 9 9 9 7 7 9 0 0 5 5 3 % 3 5 5 8 9 9 10
```



```
Control 17 8 9 7 10 10 10 1 1 6 6 % 6
            2
```



```
TCPO 16 0 5 7 10 4 4 8 11 6 10 6 9 9 3 4 4 2 8 0 6 0 9
                    3 6
```



```
;
data ossi;
    set ossi;
    array xx{3} x1-x3;
    do i=1 to 3; xx{i}=0; end;
    pht = 0;
    tcpo = 0;
    if (tx='TCPO') then do;
        xx{1} = 1;
        tcpo = 100;
    end; else if (tx='PHT') then do;
        xx{2} = 1;
        pht = 60;
    end; else if (tx='PHT+TCPO') then do;
        pht = 60;
        tcpo = 100;
        xx{1} = 1; xx{2} = 1; xx{3}=1;
    end;
run;
```


All Mice Are Created Equal, but Some Are More Equal

```
title "Fitting a Beta-binomial in PROC NLMIXED";
proc nlmixed data=ossification;
    parms b0=0, b1=0, b2=0, b3=0, a0=0;
    linr = a0;
    rho = 1/(1+exp(-linr));
    c = 1 / rho / rho - 1;
    if (tx='Control') then linp = b0;
    else if (tx='TCPO') then linp = b0+b1;
    else if (tx='PHT') then linp = b0+b2;
    else if (tx='PHT+TCPO') then linp = b0+b1+b2+b3;
    pi = 1/(1+exp(-linp));
    pic = 1 - pi;
    z = lgamma(m+1) - lgamma(t+1) - lgamma(m_t+1);
    ll = z + lgamma(c) + lgamma(t+c*pi) + lgamma(m_t+c*pic)
        - lgamma(m+c) - lgamma(c*pi) - lgamma(c*pic);
    model t ~ general(ll);
    estimate 'Pi Control' 1/(1+exp(-b0));
    estimate 'Pi TCPO' 1/(1+exp(-b0-b1));
    estimate 'Pi PHT' 1/(1+exp(-b0-b2));
    estimate 'Pi PHT+TCPO' 1/(1+exp(-b0-b1-b2-b3));
    estimate 'Logarithm Odds-Ratio PHT when TCPO Absent ' b2;
    estimate 'Logarithm Odds-Ratio PHT when TCPO Present' b2+b3;
    estimate 'Common Rho*Rho' 1/(1+exp(-a0))/(1+exp(-a0));
run;
title;
```


All Mice Are Created Equal, but Some Are More Equal

Additional Estimates								
Label	Estimate	Standard Error	DF	t Value	$\mathrm{Pr}>\|\mathrm{t}\|$	Alpha	Lower	Upper
Pi Control	0.6546	0.05124	81	12.77	<. 0001	0.05	0.5526	0.7565
Pi TCPO	0.4240	0.07372	81	5.75	<. 0001	0.05	0.2773	0.5707
Pi PHT	0.2911	0.06336	81	4.59	<. 0001	0.05	0.1650	0.4172
Pi PHT+TCPO	0.2280	0.08255	81	2.76	0.0071	0.05	0.06378	0.3923
Logarithm Odds-Ratio PHT when TCPO Absent	-1.5291	0.3956	81	-3.87	0.0002	0.05	-2.3161	-0.7421
Logarithm Odds-Ratio PHT when TCPO Present	-0.9129	0.5608	81	-1.63	0.1075	0.05	-2.0288	0.2030
Common Rho*Rho	0.3400	0.04860	81	7.00	<. 0001	0.05	0.2433	0.4367

All Mice Are Created Equal, but Some Are More Equal

```
title "Fitting a Beta-binomial in PROC FMM";
proc fmm data=ossi;
    model t/m = x1-x3 / dist=betabinomial;
run;
proc fmm data=ossi;
    class tcpo pht;
    model t/m = tcpo pht tcpo*pht / dist=betabinomial;
run;
```


All Mice Are Created Equal, but Some Are More Equal

All Mice Are Created Equal, but Some Are More Equal

```
title "Fitting a Random-clumped Binomial in PROC FMM";
proc fmm data=ossi;
        model t/m = / dist=binomcluster;
        probmodel x1-x3;
run;
proc fmm data=ossi;
    class tcpo pht;
        model t/m = / dist=binomcluster;
        probmodel tcpo pht tcpo*pht;
run;
```

WARNING: Note that the MODEL statement specifies a model for the overdispersion parameter, not the link for the mean.

All Mice Are Created Equal, but Some Are More Equal

Fitting a Random-clumped Binomial in PROC FMM								
The FMM Procedure								
	Model Information							
	Data Set			WORK.OSSI				
	Response Variable (Events)			t				
	Response Variable (Trials)			m				
	Type of Model			Binomial Cluster				
	Distribution			Binomial Cluster				
	Components			2				
	Link Function			Logit				
	Estimation Method			Maximum Likelihood				
		Fit Statistics						
		-2 Log Likelihood			305.1			
		AIC (smaller is better)			315.1			
		AICC (smaller is better)			315.9			
		BIC (smaller is better)			327.0			
		Pearson Statistic 8			89.2077			
		Effective Parameters			5			
		Effective Components			2			
Parameter Estimates for 'Binomial Cluster' Model								
Component	Effect	Estimate	Standard Error		z Value	$\operatorname{Pr}>\|z\|$	Inverse Linked Estimate	
1	Intercept	$0.3356 \quad 0.1714$			1.96	0.0503	0.5831	
	Parameter Estimates for Mixing Probabilities							
	Effect	Estimate	Standard	Error	z Value	Pr > \|z		
	Intercept	0.6392		0.2266	- 2.82	0.0048		
	x 1	-0.9457		. 3711	1 -2.55	0.0108		
	x2	-1.5291		. 3956	- -3.87	0.0001		
	x3	0.6162		. 6678	$8 \quad 0.92$	0.3561		

Ossification Example with the OverdispersionModelsInR package

Read the data.

```
ossification <- read.table("ossification.dat", header = TRUE)
tail(ossification)
    litter group oss size
        76 PHT+TCPO 0 4
        77 PHT+TCPO 0 6
        78 PHT+TCPO 0 7
        79 PHT+TCPO 6 6
        80 PHT+TCPO 1 6
        81 PHT+TCPO 1 7
> levels(ossification$group)
[1] "Control" "PHT" "PHT+TCPO" "TCPO"
```

Consider two models:
-RCB: $T_{i} \sim \operatorname{RCB}\left(m_{i}, \pi_{i}, \rho\right)$

- BB: $T_{i} \sim B B\left(m_{i}, \pi_{i}, \rho\right)$

Both models have a common regression on π_{i} given by

Prepare the data for model fitting.

```
tcpo <- ossification$group %in% c("TCPO", "PHT+TCPO")
pht <- ossification$group %in% c("PHT", "PHT+TCPO")
both <- ossification$group %in% c("PHT+TCPO")
X <- cbind(1, tcpo, pht, both)
colnames(X) <- c("Intercept", "TCPO", "PHT", "PHT+TCPO")
y <- ossification$oss
m <- ossification$size
```

Fit the models, specifying "extra" estimates (quantities not required to evaluate the likelihood).

```
var.names <- c(colnames(X), "rho", "Pi Control", "Pi PHT", "Pi TCPO",
    "Pi PHT+TCPO", "Log-odds-ratio PHT vs. Control, TCPO Present",
    "Log-odds-ratio PHT vs. Control, TCPO Absent", "rho.sq")
extra.tx <- function(theta){
    list(Pi.control = plogis(theta$Beta[1]),
    Pi.TCPO = plogis(sum(theta$Beta[1:2])),
    Pi.PHT = plogis(sum(theta$Beta[c(1,3)])),
    Pi.PHT_TCPO = plogis(sum(theta$Beta[1:4])),
    log.odds.tcpo = theta$Beta[3],
    log.odds.notcpo = sum(theta$Beta[3:4]),
    rho.sq = theta$rho^2)
}
fit.rcb.x.out <- fit.rcb.x.mle(y, m, X, extra.tx = extra.tx, var.names =
var.names)
fit.bb.x.out <- fit.bb.x.mle(y, m, X, extra.tx = extra.tx, var.names =
var.names)
```


BB Results:

```
> fit.bb.x.out
Fit for model:
y[i] ~indep~ BB(m[i], Pi[i], rho)
logit(Pi[i]) = x[i]^T Beta
--- Parameter Estimates
\begin{tabular}{lrrrrr} 
& Estimate & SE & t-val & P(|t|>t-val) & Gradient \\
Intercept & 0.7043 & 0.2341 & 3.0087 & 0.0035 & -0.0002 \\
TCPO & -0.7822 & 0.4017 & -1.9474 & 0.0550 & -0.0001 \\
PHT & -1.6917 & 0.4018 & -4.2102 & \(6.563 \mathrm{E}-05\) & -0.0001 \\
PHT+TCPO & 0.6769 & 0.6902 & 0.9808 & 0.3296 & \(3.822 \mathrm{E}-05\) \\
rho & 0.5808 & 0.0466 & 12.4609 & \(0.000 \mathrm{E}+00\) & \(-3.082 \mathrm{E}-05\)
\end{tabular}
--- Additional Estimates ---
Pi PHT
Pi TCPO
Pi PHT+TCPO
Log-OR PHT vs. Control, w/TCPO
\begin{tabular}{rrrrr} 
Estimate & SE & t-val & P(|t|>t-val) & Gradient \\
0.6691 & 0.0518 & 12.9117 & \(0.000 \mathrm{E}+00\) & \(-3.410 \mathrm{E}-05\) \\
0.4805 & 0.0816 & 5.8870 & \(8.548 \mathrm{E}-08\) & \(-7.051 \mathrm{E}-05\) \\
0.2714 & 0.0628 & 4.3211 & \(4.376 \mathrm{E}-05\) & \(-5.811 \mathrm{E}-05\) \\
0.2511 & 0.0883 & 2.8434 & 0.0056 & \(-7.222 \mathrm{E}-05\) \\
-1.6917 & 0.4018 & -4.2102 & \(6.563 \mathrm{E}-05\) & -0.0001 \\
-1.0148 & 0.5727 & -1.7720 & 0.0802 & -0.0001 \\
0.3374 & 0.0541 & 6.2304 & \(1.969 \mathrm{E}-08\) & \(-3.580 \mathrm{E}-05\)
\end{tabular}
Degrees of freedom = 81
LogLik = -153.2876
AIC = 316.5751
AICC = 317.3751
BIC = 328.5474
```


RCB Results:

```
> fit.rcb.x.out
Fit for model:
y[i] ~indep~ RCB(m[i], Pi[i], rho)
logit(Pi[i]) = x[i]^T Beta
--- Parameter Estimates
\begin{tabular}{lrrrrr} 
& Estimate & SE & t-val & P(|t|>t-val) & Gradient \\
Intercept & 0.6392 & 0.2266 & 2.8204 & 0.0060 & 0.0003 \\
TCPO & -0.9456 & 0.3711 & -2.5481 & 0.0127 & \(5.367 \mathrm{E}-05\) \\
PHT & -1.5291 & 0.3956 & -3.8657 & 0.0002 & \(4.795 \mathrm{E}-05\) \\
PHT+TCPO & 0.6161 & 0.6678 & 0.9226 & 0.3589 & 0.0001 \\
rho & 0.5831 & 0.0417 & 13.9926 & \(0.000 \mathrm{E}+00\) & \(-4.272 \mathrm{E}-05\)
\end{tabular}
--- Additional Estimates ---
Pi Control
Pi PHT
Pi TCPO
Pi PHT+TCPO
Log-OR PHT vs. Control, w/TCPO
\begin{tabular}{rrrrr} 
Estimate & SE & t-val & P(|t|>t-val) & Gradient \\
0.6546 & 0.0512 & 12.7741 & \(0.000 \mathrm{E}+00\) & \(5.989 \mathrm{E}-05\) \\
0.4240 & 0.0737 & 5.7510 & \(1.517 \mathrm{E}-07\) & \(7.779 \mathrm{E}-05\) \\
0.2911 & 0.0634 & 4.5946 & \(1.573 \mathrm{E}-05\) & \(6.456 \mathrm{E}-05\) \\
0.2280 & 0.0826 & 2.7623 & 0.0071 & \(9.019 \mathrm{E}-05\) \\
-1.5291 & 0.3956 & -3.8657 & 0.0002 & \(4.795 \mathrm{E}-05\) \\
-0.9129 & 0.5608 & -1.6278 & 0.1074 & 0.0002 \\
0.3400 & 0.0486 & 6.9963 & \(6.856 \mathrm{E}-10\) & \(-4.982 \mathrm{E}-05\)
\end{tabular}
rho.sq
    0.3400 0.0486 6.9963
    6.856E-10 -4.982E-05
Degrees of freedom = 81
LogLik = -152.5267
AIC = 315.0534
AICC = 315.8534
BIC = 327.0257
```


All Mice Are Created Equal, but Some Are More Equal

Beta Estimates and Standard Errors of the Ossification Data

		Distribution					
Parameter	Estimate	Standard Error	Estimate	Standard Error	Random-clumped Binomial		
Intercept $\left(\hat{\beta}_{0}\right)$	0.8323	0.1365	0.7043	0.2341	0.6392	0.2266	
TCPO $\left(\hat{\beta}_{1}\right)$	-0.8481	0.2239	-0.7822	0.4017	-0.9457	0.3711	
PHT $\left(\hat{\beta}_{2}\right)$	-2.1094	0.2505	-1.6917	0.4018	-1.5291	0.3956	
TCPO + PHT $\left(\hat{\beta}_{3}\right)$	1.0453	0.4107	0.6770	0.6902	0.6162	0.6678	
Overdispersion $\left(\rho^{2}\right)$	--	--	0.3374	0.05415	0.3400	0.04860	
$-2 *$ Log Likelihood	401.8	--	306.6	--	305.1	--	

PHT: phenytoin; TCPO: trichloropropene oxide
Akaike Information Criteria (AIC) practically the same for BC and RCB

All Mice Are Created Equal, but Some Are More Equal

Approximate 95\% Confidence Intervals for Odds-ratio of PHT When TCPO is Absent or Present

	TCPO $=0 \mathrm{mg} / \mathrm{kg}$			TCPO = $100 \mathrm{mg} / \mathrm{kg}$		
Model	Odds-	Lower	Upper	Odds-	Lower	Upper
	Ratio	Bound	Bound	Ratio	Bound	Bound
Binomial	0.12	0.07	0.20	0.35	0.18	0.66
Beta-binomial	0.18	0.08	0.41	0.36	0.12	1.13
Random-clumped Binomial	0.22	0.10	0.48	0.40	0.13	1.23

PHT: phenytoin; TCPO: trichloropropane oxide

$$
\exp \left(\hat{\beta}_{2} \pm 1.96 \sqrt{\hat{v}\left(\hat{\beta}_{2}\right)}\right) \quad \exp \left(\hat{\beta}_{2}+\hat{\beta}_{3} \pm 1.96 \sqrt{\hat{v}\left(\hat{\beta}_{2}+\hat{\beta}_{3}\right)}\right)
$$

All Mice Are Created Equal, but Some Are More Equal

```
title "Fitting a Zero-inflated Binomial in PROC FMM";
proc fmm data=ossi;
    model t/m = x1-x3 / dist=binomial;
    model + / dist=Constant;
run;
title "Fitting an Arbitrary Mixture of Two Binomials in PROC FMM;
proc fmm data=ossi;
    model t/m = x1-x3 / k=2;
run;
    *--- Interpretation might be difficult!!!;
```


All Mice Are Created Equal, but Some Are More Equal

Parameter Estimates for 'Binomial' Model							
Component	Effect	Estimate	Standard Error	z Value	Pr > \|z		
$\mathbf{1}$	Intercept	1.6876	0.2049	8.23	$<.0001$		
$\mathbf{1}$	x1	-0.7364	0.3324	-2.22	0.0267		
$\mathbf{1}$	$\mathbf{x 2}$	-2.5593	0.3644	-7.02	$<.0001$		
$\mathbf{1}$	x3	4.3154	1.1270	3.83	0.0001		
$\mathbf{2}$	Intercept	-1.6757	0.4668	-3.59	0.0003		
$\mathbf{2}$	x1	-0.4363	0.6838	-0.64	0.5234		
$\mathbf{2}$	$\mathbf{x 2}$	-0.6293	0.9055	-0.70	0.4870		
$\mathbf{2}$	$\mathbf{x 3}$	-0.1100	1.1947	-0.09	0.9267		

Parameter Estimates for Mixing Probabilities						
Effect	Linked Scale					
	Estimate	Standard Error	z Value	Pr > \|z		Probability
	0.5289	0.2690	1.97	0.0493	0.6292	

Omnibus Goodness-of-fit Test

- Omnibus tests are designed to test if a specific distribution fits the data well. The null hypothesis is that the data come from a population with a specific distribution, while the alternative hypothesis states that the data do not come from that distribution.
- Since there is no model specified in the alternative hypothesis, we cannot obtain maximum likelihood estimates under the alternative.
- The Shapiro-Wilk test of normality is an example of an omnibus test.
- When the m_{j} 's are different, the construction of a Pearson's Goodness-of-fit statistic is not straightforward because the observed and expected frequencies are not associated with a unique value of m

Omnibus Goodness-of-fit Test

- Neerchal and Morel (1998) proposed an extension of the traditional Pearson's Chi-square statistic

$$
X^{2}=\sum_{s=1}^{c}\left(O_{s}-E_{s}\right)^{2} / E_{s}
$$

when the clusters sizes are allowed to be different and/or covariates are present in the model

- Asymptotic properties of this test have been investigated by Sutradhar et al. (2008).
- Test can be applied to Binomial, Beta-binomial, Random-clumped Binomial (aka Binomial Cluster), Zero-inflated Binomial, Distributions

Omnibus Goodness-of-fit Test

Divide the [0,1] interval into C mutually exclusive intervals:

Compute $\frac{t_{j}}{m_{j}}$ for $j=1,2, \ldots, n$
Then get
O_{s} : Observed number of $\frac{t_{j}}{m_{j}}$ ' s in the $s^{\text {th }}$ int erval, $s=1,2, \ldots, c$
E_{s} : Expected number of $\frac{t_{j}}{m_{j}}$'s in the $s^{\text {th }}$ int erval, $s=1,2, \ldots, c$

Omnibus Goodness-of-fit Test

Properties of GOF:

1) $\mathrm{GOF} \dot{\square} \mathrm{X}_{\mathrm{df}}^{2}$
2) Degrees of freedom (df) of GOF is between:

C-1-(Number of Parameters Estimated in the Model) and C-1 (see chapter 30 of Kendall, Stuart, and Ord, 1991)
3) Underlying DF and P-value can be obtained via Parametric Bootstrapping
4) GOF is also applicable when cluster sizes are not the same and/or covariates are present

Omnibus Goodness-of-fit Test

	Results Omnibus Goodness-of-fit Tests			
Distribution	GOF-Stat	Degrees of Freedom		P-Value
		Lower Bound	4	
		Upper Bound	8	<0.01
Beta-binomial	9.79	Lower Bound	3	0.02
		Upper Bound	8	0.28
Binomial Cluster	6.81	Lower Bound	3	0.08
		Upper Bound	8	0.56

Omnibus Goodness-of-fit Test

Parametric Bootstrapping Results Based on 5,000 Replications		
Distribution	Parameter	Estimate
Beta-binomial	Degrees of Freedom	5.83
	P-value	0.11
Random-clumped Binomial	Degrees of Freedom	5.79
	P-value	0.31

Omnibus Goodness-of-fit Test

Conclusions:

a) Both distributions fit the data, however, the RCB seems to provide a better fit than the BB
b) Since in this example the RCB provides a clear mechanism on how the offspring inherit the genetic trait, I prefer the RCB over the BB

Final Remarks

"over-dispersion is the norm in practice and nominal dispersion the exception"

Beta-binomial and Binomial Cluster are now available in SAS ${ }^{\circledR}$ PROC FMM and in R

An Omnibus Goodness-of-test is available. See Morel and Neerchal (2012) "Overdispersion Models in SAS®"

Beta-binomial and Random-clumped are just the tip of the iceberg. They belong to the Generalized Linear Overdispersion Models (GLOM)

Final Remarks

1) Binomial Distribution

2) Multinomial Distribution
3) Poisson Distribution

Thanks for your attention!

