Estimati

e Trends

Estimation of Exposure -Time TrendsUsingNonlinear Segmented Models

Linda Levin, PhD Associate Professor University of Cincinnati

University of Cincinnati

Purpose of Analyses

- Reconstruct occupational exposure levels
- Estimate the impact of exposure on workers' health

Data

- IH samples- airborne fiber levels
- 1972-1994
- Samples identified by job and year of sampling
- Number of samples per year varied

Why Model Exposure Continuously?

- Insufficient data to calculate estimates of mean exposure each year
- Interpolation between data-rich years unreliable
- 'Bumpy' lines
- Exposures known to decrease with time

Preliminary Investigations of Exposure Trends -- LOESS Method

- A non-parametric method for estimating local regression
- Useful for exploring the parametric form of a regression curve which is unknown
- Assumes the regression curve can be *locally* approximated by values of a parametric function of the independent variable x
- Uses weighted least squares
- Fits linear or quadratic functions of x in neighborhoods of x
- Linear functions are default method

LOESS Method (Cont)

- Smoothing parameter
- Determines number of points used in local fitting
- Two types of fitting
- <u>Direct:</u> fitting done at each data point
- Computationally intensive
- <u>KD trees (default)</u>: points selected for fitting.
- Results are then 'blended' linearly or quadratically for observed data points

LOESS Method (Cont)

- Strategies for choosing smoothing parameter
- Graphing: Residuals vs predictor variable

Look for lack of structure or Automatic method

Example: Minimization of Akaike Information Criteria

= log (residual SS) + f(smoothing parameter)

f decreases as smoothness increases

EXAMPLE of SAS CODE

- Estimate Changes in Sample Concentrations (Exposure) from 1972 to 1994
- PROC LOESS
- Fiber= Dependent variable (Exposure) dt = Independent variable (Sample Date)
- N=170

```
proc loess;
model fiber=dt/details (modelsummary);
run;
```

Note:

Sample date was transformed using 1/1/1970 as an arbitrary frame of reference

Facilitated model convergence

dt = years (1/1/1970 to each sample date)years (1/1/1970 to first sample date)

First sample data=5/30/1972; Last sample data=9/29/1994

```
Max value of dt =10.3 , Min=1.0
```

SAS OUTPUT

The LOESS Procedure Dependent Variable: fiber

Smoothing	Local		
Parameter	Points	Residual SS	AICC
0.39118	66	0.32735	-5.14977
0.63235	107	0.36350	-5.08624
0.25000	42	0.29679	-5.18578
0.16176	27	0.28728	-5.11985
0.30882	52	0.30105	-5.18782
0.33824	57	0.32212	-5.15355
0.27941	47	0.29770	-5.19214
0.26765	45	0.29660	-5.19154
0.29706	50	0.30035	-5.18828
0.27353	46	0.29653	-5.19344
0.26765	45	0.29660	-5.19154
0.27353	46	0.29653	-5.19344

Optimal	Smoothing	Criterion
---------	-----------	-----------

	Smoothing
AICC	Parameter
-5.19344	0.27353

Figure1: LOESS Graph of Fiber Data for Grouped Jobs

5/30/1972-9/29/1994

Concentration (PCM f/cc)

Results of Job-Specific Exploratory Analyses

- Smoothness of curves varied by job
- Variations in exposure levels *and a*mount of data
- Between-sample variances increased as yearly exposure means increased

Results of Job-Specific Exploratory Analyses (Cont)

- Verified decrease in exposure over time
- Steeper in mid 1970s
- Less decline in later years

Conclusion

Exponential models are a reasonable parametric form to model exposure trends over time

Nonlinear Exponential Regression Model For Mean Exposure

- Dependent variable C(t) = fiber concentration at time t
- $C(t) = \mu(t) + e_t$
- μ(t) = mean of C(t) at time t
- $\mu(t) = two parameter exponential function of t$
- e_t = normally distributed error term with mean o
- Time t coded as number of years from 1/1/1970 to sample date

Two Parameter Exponential Model For Mean Exposure

- C(t) = fiber concentration at time t
- $C(t) = \mu(t) + e_t$
- $\mu(t) = a \cdot \exp(-b \cdot t)$
- a>o intercept parameter; b>o slope parameter
- a and b expressed as exponential functions to guarantee positivity of $\mu(t)$

•
$$a = \exp(a_o)$$
 $b = \exp(b_o)$

How to Describe the Variability of Fiber Concentrations ?

• Define the relation between exposure variance and mean exposure at each year

by

'Power of the mean' variance function

Commonly used in nonlinear regression

 $\operatorname{Var}\{C(t)\} = \sigma^2 \cdot \mu(t)^{\theta}$

- θ = variance parameter determined from the data
- σ^2 = scale parameter describing precision of C(t) (Similar to σ^2 in ordinary regression)
- Consistently achieved model convergence

Implementation of Exponential Regression Analyses

PROC NLIN

• SAS for Windows, Version 9.3

Estimation of Parameters of Mean Value Function

 $\mu(t) = a \cdot \exp(-b \cdot t)$

IRWLS --- Iteratively reweighted least squares

a,b parameters estimated iteratively

Weighted least squares

Weights = inverse of variance function (mean concentration to the power θ)

Variances updated from a,b estimates

... repeated until convergence

Estimation of Variance Parameter θ

- Initially set = o
- If convergence not reached ,other values in range (0.1 to 2) manually selected
- Value at convergence identified
- Post hoc sensitivity analyses
- Other values for θ manually selected
- Confirmed convergence for θ~1 for each job

Assess Fit of Exponential Regression Models

- Mean Squared Error = σ^2
- Weighted sum of squared deviations/ df
- $\sum (Observed minus mean concentration)^2$

(n-number of parameters)

- Number of parameters= 2 for this model
- Weights = inverse of mean concentration to the power θ at each time.

Nonlinear Fitting Strategy A

- Individual jobs fitted 1972-1994
- Job-specific intercept and slope parameters
- Results unrealistic
- When jobs in the same work area
- Were allowed to have different slopes

Nonlinear Fitting Strategy B

- Area specific: JOINTLY modeled fiber data from all jobs in the same area
- Reasonable to believe similar rates of decline in fiber levels across jobs
- Single slope parameter estimated
- Data of all jobs
- 1972-1994

Nonlinear Fitting Strategy C

Segmented Modeling Approach

- Area specific: JOINTLY modeled data from jobs in same area
- Assumed slopes differed at different time intervals
- 1972-1975 1976-1980 1981-1994
- Job slopes **equal** on each interval
- Intervals determined by documented changes in work environment and worker information

Choosing a Strategy

- Consistency with the impact of engineering controls
- Statistical goodness of fit of the model (MSE)
 - Segmented approach C yielded lower MSE
 - Compared to the un-segmented approach B for all job areas

Note: A two- or three segmented modeling approach was optimum in all job areas

Examples

- Strategy A (program and results shown)
- Strategy B (results not shown)
- Strategy C (program and results shown)

EXAMPLE of SAS CODE- Strategy A

```
proc nlin method=gauss nohalve; * turn off step-halving in IRWLS;
parms a = 5.24
    b = -1; * Initialize intercept and slope parameters;
ea=exp(a);eb=exp(b); * Model exponential functions of parameters;
0 = 0.7; * Set 0 at a value that was known to achieve convergence
    for other jobs with similar variability patterns;
model fiber= ea* exp(-eb* dt); * dt is a transformation of sample date;
fiber2= model.fiber ** 0; * power of the mean variance function;
_weight_= 1/fiber2; * weights used in minimizing SS at each iteration;
output out=outnlin p=pred sse=sigma; * used to graph curve;
run;
```

Output - Strategy A

The NLIN Procedure Dependent Variable fiber Method: Gauss-Newton

Iterative Phase					
		Weighted			
Iter	а	b S	S		
0	5.2400	-1.0000	2043.8		
1	4.2400	-1.0021	551.9		
2	3.2399	-1.0078	147.1		
3	2.2399	-1.0229	38.4241		
4	1.2414	-1.0623	10.5923		
5	0.2549	-1.1574	4.6150		
6	-0.6633	-1.3493	3.7515		
12	-1.6342	-1.8213	3.3276		
13	-1.6343	-1.8214	3.3276		
NOTE: Convergence criterion met					

Method	Gauss-Newton		
	Iterations	13	
	Objective	3.327635	
	Observations Read	170	
	Observations Used	170	
	Observations Missing	g 0	
	NOTE: An intercept was n	not specified for thi	s model.

		Sum of	Mean	Approx	
Source	DF	Squares	Square	F Value	Pr > F
Model	2	2.0196	1.0098	50.98 <	.0001
Error	168	3.3276	0.0198		
Uncorrected To	otal 1	70 5.34	.73		
	Ар	prox Aj	pproximate	95% Conf	fidence
Parameter	Estim	ate Std E	rror	Limits	
a -	1.6343	0.2604	-2.1484	-1.1201	
b -	1.8214	0.1625	-2.1423	-1.5006	

From output Intercept= 0.20 Slope= 0.16

Figure 2. Strategy A Exponential Graphs of Jobs Data A Curve Was Fitted for Each Job Separately

5/30/1972-9/29/1994

Terms for Strategy C (Three-Segment Model)

Example: Four Jobs

Time Intervals

	Segment 1	Segment 2	Segment 3
Job			
1	eal1*exp(eb1*dt)	ea21*exp(eb2*dt)	ea31*exp(eb3*dt)
2	ea12*exp(eb1*dt)	ea22*exp(eb2*dt)	ea32*exp(eb3*dt)
3	ea13*exp(eb1*dt)	ea23*exp(eb2*dt)	ea32*exp(eb3*dt)
4	ea14*exp(eb1*dt)	ea24*exp(eb2*dt)	ea34*exp(eb3*dt)

1972-1975 1976-1980 1981-1994

Estimated fiber values forced (by programming) to be connected at the endpoints of contiguous time segments

Example: Job 1

Intercepts are constrained to be equal

```
At dt1 = cutpoint between segments 1 and 2
ea21*exp(eb2*dt1) = ea11*exp(eb1*dt)
ea21= ea11 +exp ([eb2-eb1]*dt1)
```

```
At dt2= cutpoint between segments 2 and 3
ea31=ea11*exp(dt1*(eb2-eb1))*exp(dt2*(eb3-eb2));
```

EXAMPLE of SAS CODE- Strategy C

*****Define indicator variables to estimate intercept and

slope parameters for each job on each time segment;

```
data jobs4;set temp;
j=(job=1); k=(job=2); m=(job=3); n=(job=4);
x=(dt le dt1); y=(dt1 lt dt le dt2); z=(dt gt dt2);
0= 1; *model converged for theta =1;
run;
```

```
proc nlin method=gauss nohalve;
    bounds all-al4 <=4; bounds b3 >=-12;
    parms all=2.5 al2=0.9 al3=2.2 al4=1.7
    bl=-1.6 b2=-1.0 b3=-4;
```

- all-ald initial estimates of intercept parameters for each job on first segment;
- b1-b3 initial slopes for each segment;
- Exponentiate parameters;

EXAMPLE of SAS CODE- Strategy C (Cont)

• Intercepts of each job on segments 2 and 3 are interpolated from segment 1 and estimated slopes

eb1= exp(b1); eb2=exp(b2); eb3=exp(b3);

eal1=exp(al1);eal2=exp(al2);eal3=exp(al3);eal4=exp(al4);

ea21=ea11*exp(dt1*(eb2-eb1));ea31=ea11*exp(dt1*(eb2-eb1))*exp(dt2*(eb3-eb2));

ea22=ea12*exp(dt1*(eb2-eb1));ea32=ea12*exp(dt1*(eb2-eb1))*exp(dt2*(eb3-eb2));

ea23=ea13*exp(dt1*(eb2-eb1));ea33=ea13*exp(dt1*(eb2-eb1))*exp(dt2*(eb3-eb2));

ea24=ea14*exp(dt1*(eb2-eb1));ea34=ea14*exp(dt1*(eb2-eb1))*exp(dt2*(eb3-eb2));

model fiber= eal1*exp(-eb1*dt)*(j=1 and x=1) + ea21* exp(-eb2*dt)*(j=1
and y=1)+ ea31* exp(-eb3*dt)*(j=1 and z=1)+ eal2*exp(-eb1*dt) * (k=1
and x=1)+ ea22* exp(-eb2*dt)*(k=1 and y=1)+ ea32* exp(-eb3*dt)*(k=1 and
z=1)+ eal3*exp(-eb1*dt) * (m=1 and x=1)+ ea23* exp(-eb2*dt)*(m=1 and
y=1)+ ea33* exp(-eb3*dt)*(m=1 and z=1)+ ea14*exp(-eb1*dt) * (n=1 and
x=1)+ ea24* exp(-eb2*dt)*(n=1 and y=1)+ ea34* exp(-eb3*dt)*(n=1 and z=1);
weight= 1/fiber2;

output out=outnlin p=pred sse=sigma;run;

Output-Strategy C

Method Gauss-Newton The NLIN Procedure Iterations Dependent Variable fiber Observations Read Method: Gauss-Newton Observations Used Observations Missing Iterative Phase Sum of Mean Weighted Source DF Squares Square F Value a11 a12 a13 a14 b1 b2 SS 0 2.5000 0.9000 2.2000 1.7000 -1.6000 -1.0000 2437.7 Model 9 830.8 92.3075 18.17 Weighted 2707.9 Error 33 5.0804 a11 a12 a13 a14 b1 b2 SS 3538.6 Uncorrected Total 542 1.7120 1 2.5560 0.9740 2.2353 -1.5226 -0.6964 2432.5 Weighted Approximate 95% Approx a11 a12 a13 a14 b1 b2 SS Estimate Std Error Confidence Limits Parameter 2.5654 0.9942 2.2326 -1.5154 -0.4729 2463.0 2 1.7009 a11 2.5159 0.3101 1.9067 Weighted a12 0.9412 1.1805 -1.3777b2 a11 a12 a13 a14 b1 SS 2.1757 0.5095 1.1748 a13 -1.5977 38 2.5159 0.9412 2.1757 1.7393 -0.0781 2707.9 a14 1.7393 1.1554 -0.5304 b1 -1.59770.3246 -2.2354

b2

Bound0

-0.0781

9.277E-7

0.1247

0.000227

-0.3231

-0.00044

38

542

542 0

Approx

Pr > F

<.0001

3.1251

3.2602

3.1767

4.0090

0.1669

-0.9600

0.000445

NOTE: Convergence criterion met.

Iter

Iter

Iter

Iter

Figure 3. Strategy C Three-Segment Exponential Graphs Curves Fitted Jointly for Each Job

Time segments: 1972-1975, 1976-1980, 1980-1994

Acknowledgement

- Grace LeMasters, PhD
- James Lockey, MD
- Tim Hilbert, MS
- Shu Zheng, MS
- Thanks for providing the data, assisting with graphs and PowerPoint presentation.